Chin. Phys. Lett.  2017, Vol. 34 Issue (8): 087201    DOI: 10.1088/0256-307X/34/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb$_{3}$Rh$_{7}$O$_{15}$
Yan Li1, Zhao Sun1, Jia-Wei Cai1, Jian-Ping Sun2,6, Bo-Sen Wang2,6, Zhi-Ying Zhao3,4, Y. Uwatoko5, Jia-Qiang Yan3, Jin-Guang Cheng2,6**
1College of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617
2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
5The Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
6University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Yan Li, Zhao Sun, Jia-Wei Cai et al  2017 Chin. Phys. Lett. 34 087201
Download: PDF(859KB)   PDF(mobile)(871KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mixed-valent Pb$_{3}$Rh$_{7}$O$_{15}$ undergoes a Verwey-type transition at $T_{\rm v} \approx 180$ K, below which the development of Rh$^{3+}$/Rh$^{4+}$ charge order induces an abrupt conductor-to-insulator transition in resistivity. Here we investigate the effect of pressure on the Verwey-type transition of Pb$_{3}$Rh$_{7}$O$_{15}$ by measuring its electrical resistivity under hydrostatic pressures up to 8 GPa with a cubic anvil cell apparatus. We find that the application of high pressure can suppress the Verwey-type transition around 3 GPa, above which a metallic state is realized at temperatures below $\sim $70 K, suggesting the melting of charge order by pressure. Interestingly, the low-temperature metallic region shrinks gradually upon further increasing pressure and disappears completely at $P >7$ GPa, which indicates that the charge carriers in Pb$_{3}$Rh$_{7}$O$_{15}$ undergo a reentrant localization under higher pressures. We have constructed a temperature-pressure phase diagram for Pb$_{3}$Rh$_{7}$O$_{15}$ and compared to that of Fe$_{3}$O$_{4}$, showing an archetype Verwey transition.
Received: 09 July 2017      Published: 10 July 2017
PACS:  72.80.Ga (Transition-metal compounds)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.62.Fj (Effects of pressure)  
Fund: Supported by the "Shi-Pei Ji Hua", the National Science Foundation of China under Grant Nos 51402019 and 11574377, the Beijing Natural Science Foundation under Grant No 2152011, the National Basic Research Program of China under Grants No 2014CB921500, the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant Nos XDB07020100 and QYZDB-SSW-SLH013, the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and the CEM, and NSF MRSEC under Grant No DMR-1420451.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/8/087201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I8/087201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan Li
Zhao Sun
Jia-Wei Cai
Jian-Ping Sun
Bo-Sen Wang
Zhi-Ying Zhao
Y. Uwatoko
Jia-Qiang Yan
Jin-Guang Cheng
[1]Mott N 1984 Rep. Prog Phys. 47 909
[2]Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[3]Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[4]Salkola M I, Emery V J and Kivelson S A 1996 Phys. Rev. Lett. 77 155
[5]Mizoguchi H, Ramirez A P, Siegrist T, Zakharov L N, Sleight A W and Subramanian M A 2009 Chem. Mater. 21 2300
[6]Verwey E J W 1939 Nature 144 327
[7]Wright J P, Attfield J P and Radaelli P G 2001 Phys. Rev. Lett. 87 266401
[8]Mori N, Todo S, Takeshita N, Mori T and Akishige Y 2002 Physica B 312-313 686
[9]Uwatoko Y, Matsubayashi K, Matsumoto T, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M and Kagi H 2008 Rev. High Press. Sci. Technol. 18 230
[10]Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H and Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907
[11]Walz F 2002 J. Phys.: Condens. Matter 14 R285
[12]Muramatsu T, Gasparov L V, Berger H, Hemley R J and Struzhkin V V 2016 J. Appl. Phys. 119 135903
Related articles from Frontiers Journals
[1] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 087201
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 087201
[3] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou. Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method[J]. Chin. Phys. Lett., 2018, 35(2): 087201
[4] Xu-Bo Lai, Yu-Hang Wang, Xiao-Lan Shi, Dong-Yong Li, Bo-Yang Liu, Rong-Ming Wang, Liu-Wan Zhang. Bipolar Resistive Switching in Epitaxial Mn$_{3}$O$_{4}$ Thin Films on Nb-Doped SrTiO$_{3}$ Substrates[J]. Chin. Phys. Lett., 2016, 33(06): 087201
[5] Wei-Cheng Lee, Congjun Wu. Microscopic Theory of the Thermodynamic Properties of Sr$_3$Ru$_2$O$_7$[J]. Chin. Phys. Lett., 2016, 33(03): 087201
[6] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 087201
[7] CHEN Yong-Chang, HUO Miao, LIU Yang, CHEN Tong, LENG Cheng-Cai, LI Qiang, SUN Zhao-Lin, SONG Li-Juan. Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory[J]. Chin. Phys. Lett., 2015, 32(01): 087201
[8] ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li, LIU Yong, XIONG Rui, SHI Jing, AN Li-Heng, SUN Duo-Hua. Transport Behavior in Spinel Oxide MgTi2O4[J]. Chin. Phys. Lett., 2014, 31(09): 087201
[9] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 087201
[10] ZHAO Geng, CHENG Xiao-Man, **, TIAN Hai-Jun, DU Bo-Qun, LIANG Xiao-Yu . Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer[J]. Chin. Phys. Lett., 2011, 28(12): 087201
[11] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 087201
[12] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 087201
[13] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 087201
[14] WANG Yan, LIU Qi, LV Hang-Bing, LONG Shi-Bing, ZHANG Sen, LI Ying-Tao, LIAN Wen-Tai, YANG Jian-Hong**, LIU Ming . CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films[J]. Chin. Phys. Lett., 2011, 28(7): 087201
[15] YUE Song, DU Juan, ZHANG Yuan, ZHANG Yu-Heng. Metal-Insulator Transition in CuIr2(S1-xTex)4[J]. Chin. Phys. Lett., 2009, 26(11): 087201
Viewed
Full text


Abstract