Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 077803    DOI: 10.1088/0256-307X/34/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Dependence of Nonlinear Optical Response of Anatase TiO$_{2}$ on Shape and Excitation Intensity
Lu-Hua Guo, Ying-Wei Wang, Yong-Qiang Jiang, Si Xiao**, Jun He**
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083
Cite this article:   
Lu-Hua Guo, Ying-Wei Wang, Yong-Qiang Jiang et al  2017 Chin. Phys. Lett. 34 077803
Download: PDF(1116KB)   PDF(mobile)(1106KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonlinear optical (NLO) properties of anatase TiO$_{2}$ with nanostructures of nanoparticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture $Z$-scan techniques with a femtosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO$_{2}$ NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780 nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coefficients follow the order NPs$\ge$NWs$\ge$NWAs. The results also show that these shape and annealing effects are dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO$_{2}$ in optoelectronic devices or other aspects.
Received: 14 March 2017      Published: 23 June 2017
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.67.Uh (Nanowires)  
  42.65.-k (Nonlinear optics)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/077803       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/077803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu-Hua Guo
Ying-Wei Wang
Yong-Qiang Jiang
Si Xiao
Jun He
[1]Fujishima A and Honda K 1972 Nature 238 37
[2]Li C et al 2016 Acta Phys. Sin. 65 037102 (in Chinese)
[3]Portuondo-Campa E et al 2008 J. Chem. Phys. 128 244718
[4]Wang G M, Wang H Y, Ling Y C, Tang Y C, Yang X Y, Fitzmorris R C, Wang C C, Zhang J Z, Li Y et al 2011 Nano Lett. 11 3026
[5]Li S P et al 2015 RSC Adv. 5 1902
[6]Kuralay F et al 2016 Talanta 160 325
[7]Albelda J A V et al 2017 Biosensors Bioelectronics 89 518
[8]Hazra A et al 2013 Sens. Actuators B: Chem. 183 87
[9]Ma H C et al 2015 Electrochem. Commun. 57 18
[10]Xiong J et al 2014 Org. Electron. 15 835
[11]Xiong J et al 2014 Org. Electron. 15 1745
[12]Wang X X et al 2015 Curr. Appl. Phys. 15 662
[13]Sugimoto T, Zhou X P and Muramatsu A 2003 J. Colloid Interface Sci. 259 43
[14]Chen D H and Caruso R A 2013 Adv. Funct. Mater. 23 1356
[15]Divya S et al 2014 Appl. Phys. A 114 1079
[16]Yang Z et al 2015 Acta Phys. Sin. 64 177901 (in Chinese)
[17]Zhao M et al 2016 Chin. Phys. Lett. 33 104201
[18]Wang Y W, Liu S, Zeng B W, Huang H, Xiao J, Li J B, Long M Q, Xiao S, Yu X F, Gao Y L, He J et al 2017 Nanoscale 9 4683
[19]Xiao S et al 2015 Opt. Express 23 5875
[20]Zhang J D et al 2016 Opt. Lett. 41 1704
[21]Wang Y Q et al 2014 Acta Phys. Sin. 63 144204 (in Chinese)
[22]Elim H I et al 2003 Appl. Phys. Lett. 82 2691
[23]Gayvoronsky V et al 2005 Appl. Phys. B 80 97
[24]Divya S et al 2014 Chin. Phys. B 23 084203
[25]Zhang K et al 2011 Opt. Lett. 36 3443
[26]Pan X et al 2012 ACS Appl. Mater. Interfaces 4 3944
[27]Sheik-Bahae M et al 1990 IEEE J. Quantum Electron. 26 760
[28]Wang Y Q et al 2015 Acta Phys. Sin. 64 034214 (in Chinese)
[29]Xu J L et al 2015 Sci. Rep. 5 14856
[30]Wang Y W et al 2016 Sci. Rep. 6 33070
[31]He J et al 2004 J. Appl. Phys. 95 6381
[32]Neo M S et al 2009 J. Phys. Chem. C 113 19055
[33]Watanabe Y, Ohnishi M and Tsuchiya T 1995 Appl. Phys. Lett. 66 3431
[34]Xiong J et al 2016 Org. Electron. 30 30
[35]Yan T F et al 2015 Chin. Phys. Lett. 32 077801
[36]Tong X H, Zhang H and Li D Y 2015 Sci. Rep. 5 8459
[37]Gu B, Sun Y and Ji W 2008 Opt. Express 16 17745
[38]Wang Y W et al 2015 Appl. Phys. Lett. 107 091905
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 077803
[2] Jing Du, Bosai Lyu, Wanfei Shan, Jiajun Chen, Xianliang Zhou, Jingxu Xie, Aolin Deng, Cheng Hu, Qi Liang, Guibai Xie, Xiaojun Li, Weidong Luo, and Zhiwen Shi. Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene[J]. Chin. Phys. Lett., 2021, 38(5): 077803
[3] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 077803
[4] Sibai Sun, Jianchen Dang, Xin Xie, Yang Yu, Longlong Yang, Shan Xiao, Shiyao Wu, Kai Peng, Feilong Song, Yunuan Wang, Jingnan Yang, Chenjiang Qian, Zhanchun Zuo, and Xiulai Xu. Large Photoluminescence Enhancement by an Out-of-Plane Magnetic Field in Exfoliated WS$_2$ Flakes[J]. Chin. Phys. Lett., 2020, 37(8): 077803
[5] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 077803
[6] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 077803
[7] Lele Wang, Bosai Lyu, Qiang Gao, Jiajun Chen, Zhe Ying, Aolin Deng, Zhiwen Shi. Near-Field Optical Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2020, 37(2): 077803
[8] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 077803
[9] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 077803
[10] Jin-Song Huang, Jing-Wen Wang, Yao Wang, Yan-Ling Li. High-Efficiency Quantum Routing in a Multi-Cross-Shaped Waveguide[J]. Chin. Phys. Lett., 2019, 36(3): 077803
[11] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 077803
[12] Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 077803
[13] Shun-yu Zhou, Yan-xia Ye, Kun Ding, De-sheng Jiang, Xiu-ming Dou, Bao-quan Sun. Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(6): 077803
[14] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 077803
[15] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 077803
Viewed
Full text


Abstract