Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 074701    DOI: 10.1088/0256-307X/34/7/074701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Simulation of Double-Front Detonation of Suspended Mixed Cyclotrimethylenetrinitramine and Aluminum Dust in Air
Wen-Tao Zan1,2, He-Fei Dong2, Tao Hong2**
1School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081
2Institute of Applied Physics and Computational Mathematics, Beijing 100094
Cite this article:   
Wen-Tao Zan, He-Fei Dong, Tao Hong 2017 Chin. Phys. Lett. 34 074701
Download: PDF(579KB)   PDF(mobile)(581KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-Al dust detonation wave are obtained. The double-front detonation and steady state of detonation wave of the mixed dust are analyzed. For the dust mixed RDX with density of 0.565 kg/m$^{3}$ and radius of 10 μm as well as aluminum with density of 0.145 kg/m$^{3}$ and radius of 4 μm, the detonation wave will reach a steady state at 23 m. The effects of the size of aluminum on the detonation are analyzed. For constant radius of RDX particles with radius of 10 μm, as the radius of aluminum particles is larger than 2.0 μm, the double-front detonation can be observed due to the different ignition distances and reaction rates of RDX and aluminum particles. As the radius of aluminum particles is larger, the velocity, pressure and temperature of detonation wave will be slower. The pressure at the Chapman–Jouguet (CJ) point also becomes lower. Comparing the detonation with single RDX dust, the pressure and temperature in the flow field of detonation of mixed dust are higher.
Received: 29 November 2016      Published: 23 June 2017
PACS:  47.40.Rs (Detonation waves)  
  47.61.Jd (Multiphase flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/074701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/074701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Tao Zan
He-Fei Dong
Tao Hong
[1]Hong T, Lin W Z and Qin C S 2010 Chin. J. High Press. Phys. 24 15 (in Chinese)
[2]Hong T and Qin C S 2004 Chin. J. Energ. Mater. 12 129 (in Chinese)
[3]Veyssiere B, Khasainov B A and Briand A 2008 Shock Waves 18 307
[4]Briand A et al 2010 Shock Waves 20 521
[5]Teng H H and Jiang Z L 2015 The 29th International Symposium on Shock Waves (Switzerland 2015) p 247
[6]Veyssiere B and Khasainov B A 1995 Shock Waves 4 171
[7]Khasainov B A and Veyssiere B 1996 Shock Waves 6 9
[8]Uphoff U and Hanel D 1996 Shock Waves 6 17
[9]Michael C 1998 The 11th International Detonation Symposium (Colorado 1998) p 193
[10]Khasainov B A and Ermolaev B S 2002 The 12th International Detonation Symposium (California 2002) p 501
[11]Hong T et al 2009 Expl. Shock Wave 29 468 (in Chinese)
[12]Chang S C 1995 J. Comput. Phys. 119 295
[13]Zhang D L and Wang J T 2009 Chin. J. Comput. Phys. 26 211
[14]Wang J T et al 2007 Chin. J. Comput. Phys. 24 395
[15]Wang G et al 2010 Chin. Phys. Lett. 27 024701
[16]Dong H F et al 2011 Chin. Phys. Lett. 28 030203
[17]Liu D Y 1993 Fluid Dynamics of Two-Phase Systems (Beijing: Higher Education Press) (in Chinese)
[18]Price E W 1984 Progress in Astronautics and Aeronautics: Fundamentals of Solid-Propellant Combustion (New York 1984) p 479
[19]Hong T and Qin C S 2003 Expl. Shock Wave 23 295 (in Chinese)
[20]Sehliehting H 1983 Boudary Layer Theory (New York: McGraw-Hill)
[21]Yang S M and Tao W S 2006 Heat Transfer Theory (Beijing: Higher Education Press) (in Chinese)
[22]Eidelman S and Yang X L 1993 Combust Sci. Tech. 89 201
[23]Tulis A J and Selman J R 1982 The 19th International Symposium on Combustion (The Combustion Institute 1982) p 655
Related articles from Frontiers Journals
[1] Wen-Hu Han, Jin Huang, Ning Du, Zai-Gang Liu, Wen-Jun Kong, Cheng Wang. Effect of Cellular Instability on the Initiation of Cylindrical Detonations[J]. Chin. Phys. Lett., 2017, 34(5): 074701
[2] YANG Xian-Jun, WANG Shuai-Chuang, DENG Ai-Dong, GU Zhuo-Wei, LUO Hao. Mechanism and Simulation of Generating Pulsed Strong Magnetic Field[J]. Chin. Phys. Lett., 2014, 31(10): 074701
[3] HAN Xu, ZHOU Jin, LIN Zhi-Yong, LIU Yu . Deflagration-to-Detonation Transition Induced by Hot Jets in a Supersonic Premixed Airstream[J]. Chin. Phys. Lett., 2013, 30(5): 074701
[4] HUANG Yue, JI Hua, LIEN Fue-Sang, TANG Hao. Three-Dimensional Parallel Simulation of Formation of Spinning Detonation in a Narrow Square Tube[J]. Chin. Phys. Lett., 2012, 29(11): 074701
[5] YANG Duo-Xing, and ZHANG De-Liang. Applications of the CE/SE Scheme to Incompressible Viscous Flows in Two-Sided Lid-Driven Square Cavities[J]. Chin. Phys. Lett., 2012, 29(8): 074701
[6] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 074701
[7] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 074701
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 074701
[9] SUN Xiao-Hui, CHEN Zhi-Hua**, ZHANG Huan-Hao . MHD Control of Oblique Detonation Waves[J]. Chin. Phys. Lett., 2011, 28(1): 074701
[10] SHAO Ye-Tao, WANG Jian-Ping. Change in Continuous Detonation Wave Propagation Mode from Rotating Detonation to Standing Detonation[J]. Chin. Phys. Lett., 2010, 27(3): 074701
[11] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 074701
[12] WANG Chun, JIANG Zong-Lin, GAO Yun-Liang. Half-Cell Law of Regular Cellular Detonations[J]. Chin. Phys. Lett., 2008, 25(10): 074701
[13] HAN Gui-Lai, JIANG Zong-Lin, WANG Chun, ZHANG Fan. Cellular Cell Bifurcation of Cylindrical Detonations[J]. Chin. Phys. Lett., 2008, 25(6): 074701
[14] WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 074701
Viewed
Full text


Abstract