Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 074302    DOI: 10.1088/0256-307X/34/7/074302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Coupled Perturbed Modes over Sloping Penetrable Bottom
Fei-Long Zhu1,2, Eric I. Thorsos3, Feng-Hua Li1**
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Applied Physics Laboratory, University of Washington, WA 98105, USA
Cite this article:   
Fei-Long Zhu, Eric I. Thorsos, Feng-Hua Li 2017 Chin. Phys. Lett. 34 074302
Download: PDF(508KB)   PDF(mobile)(513KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In environments with water depth variations, one-way modal solutions involve mode coupling. Higham and Tindle developed an accurate and fast approach using perturbation theory to locally determine the change in mode functions at steps.  The method of Higham and Tindle is limited to low frequency ($\le$250 Hz). We extend the coupled perturbation method, thus it can be applied to higher frequencies. The approach is described and some examples are given.
Received: 24 February 2017      Published: 23 June 2017
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.20.Bi (Mathematical theory of wave propagation)  
  43.20.Mv (Waveguides, wave propagation in tubes and ducts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/074302       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/074302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei-Long Zhu
Eric I. Thorsos
Feng-Hua Li
[1]Evans R B 1983 J. Acoust. Soc. Am. 74 188
[2]Higham C J and Tindle C T 2003 J. Acoust. Soc. Am. 114 3119
[3]Tindle C T, O' Driscoll L M and Higham C J 2000 J. Acoust. Soc. Am. 108 76
[4]Higham C J and Tindle C T 2003 J. Acoust. Soc. Am. 113 2515
[5]Wang H Z, Wang N and Gao W 2009 Periodical of Ocean University of China 39 160 (in Chinese)
[6]Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics 2nd edn (New York: Springer)
[7]Courant R and Hilbert D 1953 Methods of Mathematical Physics (New York: Interscience) vol I chap VI
[8]Wilcox C H 1984 Sound Propagation in Stratified Fluids (New York: Springer) chap 2 sec 1
Wilcox C H 1984 Sound Propagation in Stratified Fluids (New York: Springer) chap 3 sec 9
[9]Friedman B 1956 Principles and Techniques of Applied Mathematics (New York: Wiley) chap 4
[10]Waxler R 2002 J. Acoust. Soc. Am. 112 2540
[11]Porter M B, Jensen F B and Ferla C M 1991 J. Acoust. Soc. Am. 89 1058
[12]Porter M B The KRAKEN Normal Mode Program (DRAFT) (SACLANT Undersea Research Centre)
[13]Abawi A T, Kuperman W A and Collins M D 1997 J. Acoust. Soc. Am. 102 233
[14]Peng Z H and li F H 2001 Sci. Chin. A 31 165 (in Chinese)
Related articles from Frontiers Journals
[1] Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 074302
[2] LI Jun, LI Zheng-Lin, REN Yun, LI Wen, ZHANG Ren-He. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water[J]. Chin. Phys. Lett., 2015, 32(06): 074302
[3] LUO Wen-Yu, ZHANG Ren-He. A Benchmark Model for Three-Dimensional Sound Propagation in an Ideal Wedge-Shaped Waveguide[J]. Chin. Phys. Lett., 2015, 32(02): 074302
[4] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Three-Dimensional Sound Propagation and Scattering in Two-Dimensional Waveguides[J]. Chin. Phys. Lett., 2013, 30(11): 074302
[5] NIU Hai-Qiang, ZHANG Ren-He, LI Zheng-Lin, GUO Yong-Gang, HE Li. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators[J]. Chin. Phys. Lett., 2013, 30(8): 074302
[6] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Numerical Solution of Range-Dependent Acoustic Propagation[J]. Chin. Phys. Lett., 2013, 30(7): 074302
[7] LUO Wen-Yu, YANG Chun-Mei, QIN Ji-Xing, ZHANG Ren-He. Sound Propagation in a Wedge with a Rigid Bottom[J]. Chin. Phys. Lett., 2012, 29(10): 074302
[8] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 074302
[9] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 074302
[10] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 074302
[11] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 074302
[12] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 074302
[13] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 074302
[14] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 074302
[15] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 074302
Viewed
Full text


Abstract