Chin. Phys. Lett.  2017, Vol. 34 Issue (7): 074209    DOI: 10.1088/0256-307X/34/7/074209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Tight Focusing Properties of Azimuthally Polarized Pair of Vortex Beams through a Dielectric Interface
C. A. P. Janet1, M. Lavanya2, K. B. Rajesh3**, M. Udhayakumar3, Z. Jaroszewicz4, D. Velauthapillai5
1Department of Physics, St.Xavier's Catholic College of Engineering, Nagercoil, Tamilnadu, India
2Department of Physics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India
3Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India
4Institute of Applied Optics, Department of Physical Optics, Warsaw, Poland and National Institute of Telecommunications, Warsaw, Poland
5Faculty of Engineering and Business Administration, Bergen University College, Bergen, Norway
Cite this article:   
C. A. P. Janet, M. Lavanya, K. B. Rajesh et al  2017 Chin. Phys. Lett. 34 074209
Download: PDF(994KB)   PDF(mobile)(987KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.
Received: 24 April 2017      Published: 23 June 2017
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  42.79.Ag (Apertures, collimators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/7/074209       OR      https://cpl.iphy.ac.cn/Y2017/V34/I7/074209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
C. A. P. Janet
M. Lavanya
K. B. Rajesh
M. Udhayakumar
Z. Jaroszewicz
D. Velauthapillai
[1]Torok P, Varga P, Laczik Z and Booker G J 1995 J. Opt. Soc. Am. A 12 325
[2]Biss D P and Brown T G 2001 Opt. Express 9 490
[3]Palacios D M et al 2004 Phys. Rev. Lett. 92 143905
[4]Tao S H, Yuan X C, Lin J and Burge R E 2006 Opt. Express 14 535
[5]Zhan Q W 2006 Opt. Lett. 31 867
[6]Singh R K, Senthilkumaran P and Singh K 2009 J. Opt. Soc. Am. A 26 576
[7]Chen B S and Pu J X 2009 Appl. Opt. 48 1288
[8]Molina-Terriza G, Torner L, Wright E M, García-Ripoll J J and Pérez-García V M 2001 Opt. Lett. 26 1601
[9]Zhang Z, Pu J X and Wang X 2008 Opt. Commun. 281 3421
[10]Zhang Z, Pu J X and Wang X 2008 Chin. Phys. Lett. 25 1664
[11]Indebetouw G 1993 J. Mod. Opt. 40 73
[12]Roux F S 2004 J. Opt. Soc. Am. B 21 655
[13]Born M and Wolf E 1999 Principles Opt. 7th edn (Cambridge: Cambridge University Press)
[14]Chen Z, Pu J X and Zhao D M 2011 Phys. Lett. A 375 2958
[15]Fang G J, Tian B and Pu J X 2012 Opt. Laser Technol. 44 441
[16]Amala Prathiba Janet C, Udhayakumar M, Rajesh K B, Jaroszewicz Z and Pillai T V S 2016 Opt. Quantum Electron. 48 521
[17]Amala Prathiba Janet C, Udhayakumar M, Rajesh K B, Jaroszewicz Z and Pillai T V S 2016 Chin. Phys. Lett. 33 124206
[18]Huang K, Ye H, Liu H, Teng J, Yeo S P and Qiu C W 2014 arXiv:1406.3823
[19]Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C and Hong M 2015 Sci. Rep. 5 1
[20]Machavariani G and Lumer Y 2007 Opt. Lett. 32 1468
[21]Hao X, Kuang C F, Wang T and Liu X 2010 Opt. Lett. 35 3928
[22]Lalithambigai K, Anbarasan P M and Rajesh K B 2015 Opt. Quantum Electron. 47 1027
[23]Sundaram, C M, Prabakaran, K, Anbarasan, P M, Rajesh, K B and Musthafa A M 2016 Chin. Phys. Lett. 33 064203
[24]Prabakaran C M, Rajesh K K B, Udhayakumar M, Anbarasan P M and Musthafa A M 2016 Opt. Quantum Electron. 48 507
[25]Sundaram C M, Prabakaran K, Anbarasan P M, Rajesh K B, Musthafa A M and Aroulmoji V 2017 Opt. Quantum Electron. 49 11
[26]Torok P, Varga P and Booker G R 1995 J. Opt. Soc. Am. A 12 2136
[27]Young W K S and Brown T G 2000 Opt. Express 7 77
[28]Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C and Hong M 2015 Sci. Rep. 5 9977
[29]Helseth L E 2002 Opt. Commun. 212 343
[30]Klar T A, Engel E and Hell S W 2001 Phys. Rev. E 64 066613
[31]Engel E, Huse N, Klar T A and Hell S W 2003 Appl. Phys. B 77 11
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 074209
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 074209
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 074209
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 074209
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 074209
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 074209
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 074209
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 074209
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 074209
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 074209
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 074209
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 074209
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 074209
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 074209
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 074209
Viewed
Full text


Abstract