CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice |
Jin-Lian Lu1†, Wei Luo2,3†, Xue-Yang Li2, Sheng-Qi Yang2, Jue-Xian Cao1, Xin-Gao Gong2,3, Hong-Jun Xiang2,3** |
1Department of Physics, Xiangtan University, Xiangtan 411105
2Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433
3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 |
|
Cite this article: |
Jin-Lian Lu, Wei Luo, Xue-Yang Li et al 2017 Chin. Phys. Lett. 34 057302 |
|
|
Abstract Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetals, and 3D node-line semimetals (NLSs). In particular, several compounds (e.g., certain 3D graphene networks, Cu$_{3}$PdN, Ca$_{3}$P$_{2}$) were discovered to be 3D NLSs, in which the conduction and valence bands cross at closed lines in the Brillouin zone. Except for the two-dimensional (2D) Dirac semimetal (e.g., graphene), 2D topological semimetals are much less investigated. Here we propose a new concept of a 2D NLS and suggest that this state could be realized in a new mixed lattice (named as HK lattice) composed by Kagome and honeycomb lattices. It is found that A$_{3}$B$_{2}$ (A is a group-IIB cation and B is a group-VA anion) compounds (such as Hg$_{3}$As$_{2})$ with the HK lattice are 2D NLSs due to the band inversion between the cation Hg-$s$ orbital and the anion As-$p_{z}$ orbital with respect to the mirror symmetry. Since the band inversion occurs between two bands with the same parity, this peculiar 2D NLS could be used as transparent conductors. In the presence of buckling or spin-orbit coupling, the 2D NLS state may turn into a 2D Dirac semimetal state or a 2D topological crystalline insulating state. Since the band gap opening due to buckling or spin-orbit coupling is small, Hg$_{3}$As$_{2}$ with the HK lattice can still be regarded as a 2D NLS at room temperature. Our work suggests a new route to design topological materials without involving states with opposite parities.
|
|
Received: 24 March 2017
Published: 29 April 2017
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 11374056, the Special Funds for Major State Basic Research under Grant No 2015CB921700, the Program for Professor of Special Appointment (Eastern Scholar), the Qing Nian Ba Jian Program, and the Fok Ying Tung Education Foundation. |
|
|
[1] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | [2] | Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601 | | Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802 | [3] | Fu L and Kane C L 2007 Phys. Rev. B 76 045302 | [4] | Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 | [5] | Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 | [6] | Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 | [7] | Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 | [8] | Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Richard J Ma P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 | [9] | Xu N, Weng H M, Lv B Q, Matt C, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K, Plumb N C, Radovic M, Autès G, Yazyev O V, Fang Z, Dai X, Aeppli G, Qian T, Mesot J, Ding H and Shi M 2016 Nat. Commun. 7 11006 | [10] | Xu S Y, Belopolski I, Daniel S S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R, Shibayev P P, Prokopovych M L, Alidoust N, Zheng H, Lee C C, Huang S M, Sankar R, Chou F C, Hsu C H, Jeng H T, Bansil A, Neupert T, Strocov V N, Lin H, Jia S and Hasan M Z 2015 Sci. Adv. 1 e1501092 | [11] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373 | [12] | Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864 | [13] | Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 | [14] | Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677 | [15] | He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402 | [16] | Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan Z M 2014 Nat. Commun. 5 3786 | [17] | Pariari A, Dutta P and Mandal P 2015 Phys. Rev. B 91 155139 | [18] | Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427 | [19] | Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126 | [20] | Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108 | [21] | Fang C, Chen Y, Kee H Y and Fu L 2015 Phys. Rev. B 92 081201 | [22] | Mullen K, Uchoa B and Glatzhofer D T 2015 Phys. Rev. Lett. 115 026403 | [23] | Chen Y, Xie Y, Yang S A, Pan H, Zhang F, Cohen M L and Zhang S 2015 Nano Lett. 15 6974 | [24] | Kim Y, Wieder B J, Kane C L and Rappe A M 2015 Phys. Rev. Lett. 115 036806 | [25] | Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807 | [26] | Xie L S, Schoop L M, Seibel E M, Gibson Q D, Xie W and Cava R J 2015 arXiv:1504.01731v1 | [27] | Chan Y-H, Chiu C K, Chou M Y and Schnyder A P 2015 arXiv:1510.02759v2 | [28] | Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Bansil A, Chou F, Lin H and Hasan M Z 2015 arXiv:1505.03069v1 | [29] | Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G, Bansil A, Jeng H T, Lin H and Hasan M Z 2016 Phys. Rev. B 93 121113(R) | [30] | Castro Neto A H et al 2009 Rev. Mod. Phys. 81 109 | [31] | Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803 | [32] | Palumbo Gand Meichanetzidis K 2015 Phys. Rev. B 92 235106 | [33] | Wang Z et al 2015 Nat. Commun. 6 8339 | [34] | Guo H M and Franz M 2009 Phys. Rev. B 80 113102 | [35] | Heikkilä T T and Volovik G E 2015 arXiv:1504.05824v1 | [36] | Chopra K L, Major S and Pandya D K 1983 Thin Solid Films 102 1 | [37] | Bonaccorso F et al 2010 Nat. Photon. 4 611 | [38] | Fu L 2011 Phys. Rev. Lett. 106 106802 | [39] | Liu C X et al 2010 Phys. Rev. B 82 045122 | [40] | Liu J et al 2013 Nat. Mater. 13 178 | [41] | Wrasse E O and Schmidt T M 2014 Nano Lett. 14 5717 | [42] | Liu J, Qian X and Fu L 2015 Nano Lett. 15 2657 | [43] | López Sancho M P et al 1985 J. Phys. F 15 851 | [44] | Liu J and Vanderbilt D 2014 Phys. Rev. B 90 155316 | [45] | Voon L C L Y and Willatzen M 2009 The $kp$ Method: Electronic Properties of Semiconductors (New York: Springer) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|