Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 057201    DOI: 10.1088/0256-307X/34/5/057201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential
Yan-Hua Li, Yong-Jian Xiong**
Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
Yan-Hua Li, Yong-Jian Xiong 2017 Chin. Phys. Lett. 34 057201
Download: PDF(542KB)   PDF(mobile)(535KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a theoretical study of quantum charge pumping in metallic armchair graphene nanoribbons using the Floquet–Green function method. A central part of the ribbon acting as the scattering region is supposed to have staggered sublattice potential to open a finite band gap. A single ac gate is asymmetrically applied to a part of the scattering region to drive the pumping. Corresponding to the gap edges, there are two pumped current peaks with opposite current directions, which can be reversed by changing the position of the ac gate relative to the scattering region. The effects of the parameters, such as the staggered sublattice potential, the driving frequency and the geometric parameters of the structure, on the pumping are discussed.
Received: 04 February 2017      Published: 29 April 2017
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.23.Ad (Ballistic transport)  
Fund: Supported by the K. C. Wong Magna Fund in Ningbo University, and the National Natural Science Foundation of China under Grant No 11474174.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/057201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/057201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Hua Li
Yong-Jian Xiong
[1]Kohler S, Lehmann J and Hänggi P 2005 Phys. Rep. 406 379
[2]Thouless D J 1983 Phys. Rev. B 27 6083
[3]Brouwer P W 1998 Phys. Rev. B 58 R10135
[4]Moskalets M and Büttiker M 2002 Phys. Rev. B 66 035306
[5]Altshuler B L and Glazman L I 1999 Science 283 1864
[6]Switkes M, Marcus C M, Campman K and Gossard A C 1999 Science 283 1905
[7]Wang B, Wang J and Guo H 2002 Phys. Rev. B 65 073306
[8]Foa Torres L E F 2005 Phys. Rev. B 72 245339
[9]Blumenthal M D, Kaestner B, Li L, Giblin S, Janssen T J B M, Pepper M, Anderson D, Jones G and Ritchie D A 2007 Nat. Phys. 3 343
[10]Kaestner B, Kashcheyevs V, Amakawa S, Blumenthal M D, Li L, Janssen T J B M, Hein G, Pierz K, Weimann T, Siegner U and Schumacher H W 2008 Appl. Phys. Lett. 92 192106
[11]Fujiwara A, Nishiguchi K and Ono Y 2008 Appl. Phys. Lett. 92 042102
[12]Kaestner B, Leicht C, Kashcheyevs V, Pierz K, Siegner U and Schumacher H W 2009 Appl. Phys. Lett. 94 012106
[13]Prada E, San-Jose P and Schomerus H 2009 Phys. Rev. B 80 245414
[14]Zhu R and Chen H 2009 Appl. Phys. Lett. 95 122111
[15]Grichuk E and Manykin E 2010 Europhys. Lett. 92 47010
[16]Alos-Palop M and Blaauboer M 2011 Phys. Rev. B 84 073402
[17]Ingaramo L H and Foa Torres L E F 2013 Appl. Phys. Lett. 103 123508
[18]Zhang L 2015 Chin. Phys. B 24 117202
[19]Foa Torres L E F, Calvo H L, Rocha C G and Cuniberti G 2011 Appl. Phys. Lett. 99 092102
[20]San-Jose P, Prada E, Kohler S and Schomerus H 2011 Phys. Rev. B 84 155408
[21]Zhou Y and Wu M W 2012 Phys. Rev. B 86 085406
[22]Grichuka E and Manykin E 2013 Eur. Phys. J. B 86 210
[23]Rahimi M A and Moghaddam A G 2015 J. Phys. D 48 295004
[24]Cheraghchi H 2016 J. Magn. Mater. 398 264
[25]Benjamin C 2013 Appl. Phys. Lett. 103 043120
[26]Connolly M R, Chiu K L, Giblin S P, Kataoka M, Fletcher J D, Chua C, Griffiths J P, Jones G A C, Fal'ko V I, Smith C G and Janssen T J B M 2013 Nat. Nanotechnol. 8 417
[27]Evelt M et al 2017 Phys. Rev. B 95 024408
[28]Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
[29]Sachs B, Wehling T O, Katsnelson M I and Lichtenstein A I 2016 Phys. Rev. B 94 224105
[30]Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and van den Brink J 2007 Phys. Rev. B 76 073103
[31]Xu H, Heinzel T, Evaldsson M and Zozoulenko I V 2008 Phys. Rev. B 77 245401
[32]Xiong Y J and Xiong B K 2011 J. Appl. Phys. 109 103707
[33]Zhao P and Guo J 2009 J. Appl. Phys. 105 034503
[34]Rocha C G, Foa Torres L E F and Cuniberti G 2010 Phys. Rev. B 81 115435
[35]Gu Y, Yang Y H, Wang J and Chan K S 2009 J. Phys.: Condens. Matter 21 405301
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 057201
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 057201
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 057201
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 057201
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 057201
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 057201
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 057201
[8] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 057201
[9] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 057201
[10] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 057201
[11] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 057201
[12] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 057201
[13] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 057201
[14] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 057201
[15] F. Sattari, E. Faizabadi. Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices[J]. Chin. Phys. Lett., 2013, 30(9): 057201
Viewed
Full text


Abstract