Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 056101    DOI: 10.1088/0256-307X/34/5/056101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Hydrodynamic Effects on Surface Morphology Evolution of Titanium Alloy under Intense Pulsed Ion Beam Irradiation
Ting-Jian Dong1, Cui-Hua Rong2, Jia-Chang Liang1, Bo Liu3, Xiao-Yong Zhao3, Dong-Yan Chen3, Bin Zhang3, Hao Wang1, Hai-Bo Li3, Shi-Gui Zhang3, Yu-Ping Jiang3, Bing Luo3, Xiao-Wen Zhou3, Tao Wang1, Xiao Yu2,4**, Xiao-Yun Le2**
1Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300
2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
3Sichuan Chengfa Aero Science and Technology Co. Ltd, Chengdu 610000
4School of Space and Environment, Beihang University, Beijing 100191
Cite this article:   
Ting-Jian Dong, Cui-Hua Rong, Jia-Chang Liang et al  2017 Chin. Phys. Lett. 34 056101
Download: PDF(2950KB)   PDF(mobile)(2942KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.
Received: 15 January 2017      Published: 29 April 2017
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  52.59.-f (Intense particle beams and radiation sources)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 1175012, the China Postdoctoral Science Foundation under Grant No 2016M600897, and the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX04001-071.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/056101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/056101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ting-Jian Dong
Cui-Hua Rong
Jia-Chang Liang
Bo Liu
Xiao-Yong Zhao
Dong-Yan Chen
Bin Zhang
Hao Wang
Hai-Bo Li
Shi-Gui Zhang
Yu-Ping Jiang
Bing Luo
Xiao-Wen Zhou
Tao Wang
Xiao Yu
Xiao-Yun Le
[1]Rej D J, Davis H A, Olson J C et al 1997 J. Vac. Sci. Technol. A 15 1089
[2]Remnev G E, Isakov I F, Opekounov M S et al 1999 Surf. Coat. Technol. 114 206
[3]Yatsui K, Jiang W, Suematsu H et al 2004 Int. Conf. High-Power Part. Beams. IEEE 613
[4]Pushkarev A I and Isakova Y I 2013 Surf. Coat. Technol. 228 S382
[5]Yu X, Shen J, Isakova Y I et al 2015 Vacuum 122 12
[6]Le X Y, Zhao W J, Yan S et al 2002 Surf. Coat. Technol. 158 14
[7]Le X, Yan S, Zhao W et al 2000 Surf. Coat. Technol. 128 381
[8]Shulov V A, Nochovnaia N A and Remnev G E 2002 Surf. Coat. Technol. 158 488
[9]Zhu X P, Lei M K, Dong Z H et al 2003 Surf. Coat. Technol. 173 105
[10]Zhu X P, Lei M K and Ma T C 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 211 69
[11]Han B X, Yan S, Le X Y et al 2000 Surf. Coat. Technol. 128 387
[12]Wood B P, Perry A J, Bitteker L J et al 1998 Surf. Coat. Technol. 108 171
[13]Shen J, Yu X, Zhang Y et al 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 365 26
[14]Han B X, Zhang H T, Zhao W J et al 2002 Surf. Coat. Technol. 158 482
[15]Shulov V A, Novikov A S, Paikin A G et al 2007 Surf. Coat. Technol. 201 8654
[16]Mo C L and Wang C Y 2011 Adv. Mater. Res. 250 3630
[17]Yan S, Le X Y, Zhao W J et al 2005 Surf. Coat. Technol. 193 69
[18]Isakova Y I, Pushkarev A I and Khaylov I P 2013 Rev. Sci. Instrum. 84 073302
[19]Pushkarev A I and Isakova Y I 2012 Tech. Phys. Lett. 38 140
[20]Yu X, Shen J, Qu M et al 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 365 225
[21]Miao S M, Zhu X P and Lei M K 2005 Nucl. Instrum. Methods Phys. Res. Sect. B 229 381
[22]Sussman M, Smereka P and Osher S 1994 J. Comput. Phys. 114 146
[23]Li P, Han X G, Xin J P et al 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 3945
[24]Wang X, Han X G, Lei M K et al 2007 Mater. Sci. Eng. A-Struct. 457 84
Related articles from Frontiers Journals
[1] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 056101
[2] Meng-Han Wang, Jun-Le Qu, Ming Zhu. Partially Overlapped Dual Laser Beams to Reduce Ablation Craters[J]. Chin. Phys. Lett., 2020, 37(1): 056101
[3] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 056101
[4] Yan-Nan Xu, Jin-Shun Bi, Gao-Bo Xu, Bo Li, Kai Xi, Ming Liu, Hai-Bin Wang, Li Luo. Total Ionization Dose Effects on Charge Storage Capability of Al$_{2}$O$_{3}$/HfO$_{2}$/Al$_{2}$O$_{3}$-Based Charge Trapping Memory Cell[J]. Chin. Phys. Lett., 2018, 35(11): 056101
[5] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 056101
[6] Chang-Hao Su, Chong-Hong Zhang, Yi-Tao Yang, Zhao-Nan Ding, Yu-Guang Chen, Akihiko Kimura. Hardening of an ODS Ferritic Steel after Helium Implantation and Thermal Annealing[J]. Chin. Phys. Lett., 2018, 35(5): 056101
[7] Pei Li, Chao-Hui He, Gang Guo, Hong-Xia Guo, Feng-Qi Zhang, Jin-Xin Zhang, Shu-Ting Shi. Heavy Ion and Laser Microbeam Induced Current Transients in SiGe Heterojunction Bipolar Transistor[J]. Chin. Phys. Lett., 2017, 34(10): 056101
[8] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 056101
[9] Ning Gao, Fei Gao, Zhi-Guang Wang. Anisotropic Migration of Defects under Strain Effect in BCC Iron[J]. Chin. Phys. Lett., 2017, 34(7): 056101
[10] Dong Wang, Ning Gao, W. Setyawan, R. J. Kurtz, Zhi-Guang Wang, Xing Gao, Wen-Hao He, Li-Long Pang. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2016, 33(09): 056101
[11] Shehla H., Ali A. Zongo S. Javed I. Ishaq A. Khizar H. Naseem S. Maaza M.. Fabrication of Amorphous Silver Nanowires by Helium Ion Beam Irradiation[J]. Chin. Phys. Lett., 2015, 32(09): 056101
[12] LI Pei, GUO Hong-Xia, GUO Qi, ZHANG Jin-Xin, WEI Ying,. Laser-Induced Single Event Transients in Local Oxidation of Silicon and Deep Trench Isolation Silicon-Germanium Heterojunction Bipolar Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 056101
[13] WANG Hai-Jiao, LI Yu-Dong, GUO Qi, MA Li-Ya, WEN Lin, WANG Bo. Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(5): 056101
[14] WANG Kun, QI Qiang, CHENG Gui-Jun, SHI Li-Qun. Microstructure and Mechanical Properties of Ti3SiC2 Irradiated by Carbon Ions[J]. Chin. Phys. Lett., 2014, 31(07): 056101
[15] PENG Chao, ZHANG Zheng-Xuan, HU Zhi-Yuan, HUANG Hui-Xiang, NING Bing-Xu, BI Da-Wei. Enhanced Radiation Sensitivity in Short-Channel Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effect Transistors[J]. Chin. Phys. Lett., 2013, 30(9): 056101
Viewed
Full text


Abstract