Chin. Phys. Lett.  2017, Vol. 34 Issue (5): 054206    DOI: 10.1088/0256-307X/34/5/054206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Robust Ghost Imaging Based on Degenerate Spontaneous Parametric Down-Conversion
Ling-Jun Kong1, Yu Si1, Rui Liu1, Zhou-Xiang Wang1, Wen-Rong Qi1, Chenghou Tu1, Yongnan Li1**, Hui-Tian Wang1,2,3**
1School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Nankai University, Tianjin 300071
2National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093
3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
Ling-Jun Kong, Yu Si, Rui Liu et al  2017 Chin. Phys. Lett. 34 054206
Download: PDF(986KB)   PDF(mobile)(982KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In traditional ghost imaging, the entangled photon pairs produced from the spontaneous parametric down conversion (SPDC) process are used. There is an intrinsic disadvantage that the utilization efficiency of the photon pairs is very low. Inasmuch as all the correlated photon pairs produced by the degenerate SPDC process can be used to record the image of an object, the ghost imaging scheme we present here has a higher utilization efficiency of the photon pairs. We also investigate the robustness of our experimental scheme. The experimental results show that, no matter whether the photon-pair source is two light cones or two beam-like spots, the clear image of the object can be obtained. The slight rotation of the nonlinear crystal has no influence on the imaging quality. Our experimental results also demonstrate that when the part of the photon-pair source in the signal path or the idler path is blocked by unwanted things, the clear ghost image of the object can still be recorded.
Received: 26 February 2017      Published: 29 April 2017
PACS:  42.30.Va (Image forming and processing)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11534006, 11674184 and 11374166, the Natural Science Foundation of Tianjin under Grant No 16JCZDJC31300, and the Collaborative Innovation Center of Extreme Optics.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/5/054206       OR      https://cpl.iphy.ac.cn/Y2017/V34/I5/054206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ling-Jun Kong
Yu Si
Rui Liu
Zhou-Xiang Wang
Wen-Rong Qi
Chenghou Tu
Yongnan Li
Hui-Tian Wang
[1]Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[2]Meyers R E, Deacon K S and Shih Y 2012 Appl. Phys. Lett. 100 131114
[3]Meyers R E, Deacon K S and Shih Y 2011 Appl. Phys. Lett. 98 11111
[4]Xue Y L, Wan R G, Feng F and Zhang T Y 2014 Appl. Opt. 53 3035
[5]Li D, Li X, Qin Y and Cheng Y 2014 IEEE Trans. Geoscience Remote Sensing 52 2261
[6]Cheng J 2009 Opt. Express 17 7916
[7]Zhang P L, Gong W L, Shen X and Han S S 2010 Phys. Rev. A 82 033817
[8]Clemente P, Duran V, Torres-Company V, Tajahuerce E and Lancis J 2010 Opt. Lett. 35 2391
[9]Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A and Padgett M J 2013 Science 340 844
[10]Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. A 70 013802
[11]Gatti A, Brambilla E, Bache M and Lugiato A L 2004 Phys. Rev. Lett. 93 093602
[12]Scarcelli G, Berardi V and Shih Y H 2006 Phys. Rev. Lett. 96 063602
[13]Chan K W C 2012 Opt. Lett. 37 2739
[14]Valencia A, carcelli G, D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[15]Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[16]Kong L J, Li Y N, Qian S X, Li S M, Tu C H and Wang H T 2013 Phys. Rev. A 88 013852
[17]Scarcelli G, Berardi V and Shih Y H 2006 Appl. Phys. Lett. 88 061106
[18]Meyers R, Deacon K S and Shih Y H 2008 Phys. Rev. A 77 041801(R)
[19]Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109
[20]Zhou Y, Simon J, Liu J and Shih Y H 2010 Phys. Rev. A 81 043831
[21]Liu X, Wang F, Zhang M and Cai Y 2015 J. Opt. Soc. Am. A 32 910
[22]Tong Z, Cai Y and Korotkova O 2010 Opt. Commun. 283 3838
[23]Pelliccia D, Rack A, Scheel M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 219902
[24]Yu H, Lu R, Han S, Xie H, Du G, Xiao T and Zhu D 2016 Phys. Rev. Lett. 117 113901
[25]Belinsky A V and Klyshko D N 1992 Phys. Lett. A 166 303
[26]Chirkin A S 2016 JETP Lett. 103 282
[27]Wang X L, Li Y N, Chen J, Guo C S, Ding J P and Wang H T 2010 Opt. Express 18 10786
Related articles from Frontiers Journals
[1] Dahi Ibrahim and Daesuk Kim. Direct Spatially Resolved Snapshot Interferometric Phase and Stokes Vector Extraction by Using an Imaging PolarCam[J]. Chin. Phys. Lett., 2020, 37(7): 054206
[2] Rui Ma, Shu-Yuan Zhang, Tian-Hao Ruan, Ye Tao, Hua-Ying Wang, Yi-Shi Shi. Scanning-Position Error-Correction Algorithm in Dual-Wavelength Ptychographic Microscopy[J]. Chin. Phys. Lett., 2020, 37(4): 054206
[3] Yu-Hang He, Ai-Xin Zhang, Wen-Kai Yu, Li-Ming Chen, Ling-An Wu. Energy-Selective X-Ray Ghost Imaging[J]. Chin. Phys. Lett., 2020, 37(4): 054206
[4] Ling-Jun Kong, Rui Liu, Wen-Rong Qi, Zhou-Xiang Wang, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Asymptotical Locking Tomography of High-Dimensional Entanglement[J]. Chin. Phys. Lett., 2020, 37(3): 054206
[5] Zhou-Xiang Wang, Yu-Chen Xie, Han Zhou, Shuang-Yin Huang, Min Wang, Rui Liu, Wen-Rong Qi, Qian-Qian Tian, Ling-Jun Kong, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Identifying the Symmetry of an Object Based on Orbital Angular Momentum through a Few-Mode Fiber[J]. Chin. Phys. Lett., 2019, 36(12): 054206
[6] Rui Liu, Ling-Jun Kong, Yu Si, Zhou-Xiang Wang, Wen-Rong Qi, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Multi-Path Ghost Imaging by Means of an Additional Time Correlation[J]. Chin. Phys. Lett., 2019, 36(4): 054206
[7] Xia Hua, Cheng Yang, Ye Huang, Feng Yan, Xun Cao. Localizing and Characterizing Colloidal Particles Scattering Using Lens-free Holographic Microscopy[J]. Chin. Phys. Lett., 2019, 36(1): 054206
[8] Jie-Hui Huang, Tao Peng, Luo-Jia Wang, Shi-Yao Zhu. Simultaneous Measurement of Fringe Visibility and Path Predictability of Wave-Particle Duality[J]. Chin. Phys. Lett., 2018, 35(8): 054206
[9] Jin-Bao Yang, Jian-Guo Liu, Ning-Hua Zhu, Li-Juan Yu. Visual Passive Ranging Method Based on Re-entrant Coaxial Optical Path and Experimental Verification[J]. Chin. Phys. Lett., 2017, 34(12): 054206
[10] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 054206
[11] Lei Hou, Xiao-Wei Han, Lei Yang, Wei Shi. Terahertz Real-Time Off-Axis Digital Holography with Zoom Function[J]. Chin. Phys. Lett., 2017, 34(5): 054206
[12] Tuo Li, Yi-Shi Shi. Phase-Shifting-Free Interferometric Cryptosystem[J]. Chin. Phys. Lett., 2017, 34(3): 054206
[13] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 054206
[14] Yu Si, Ling-Jun Kong, Yong-Nan Li, Cheng-Hou Tu, Hui-Tian Wang. Ghost Imaging with High Visibility Using Classical Light Source[J]. Chin. Phys. Lett., 2016, 33(03): 054206
[15] CAO De-Zhong, XU Bao-Long, ZHANG Su-Heng, WANG Kai-Ge. Color Ghost Imaging with Pseudo-White-Thermal Light[J]. Chin. Phys. Lett., 2015, 32(11): 054206
Viewed
Full text


Abstract