Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 030303    DOI: 10.1088/0256-307X/34/3/030303
GENERAL |
$Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model
Zi-Wei Zhu2, Ji-Yuan Zheng1, Lai Wang1**, Bing Xiong1, Chang-Zheng Sun1, Zhi-Biao Hao1, Yi Luo1, Yan-Jun Han1, Jian Wang1, Hong-Tao Li1
1Tsinghua National Laboratory on Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084
2Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang et al  2017 Chin. Phys. Lett. 34 030303
Download: PDF(559KB)   PDF(mobile)(551KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The wavelength-dependent and frequency-dependent dielectric function of wurtzite-GaN is calculated totally from fundamental parameters such as the lattice constant using Walter's ab initio model. The errors occurring in the calculation are carefully reduced by linear interpolation of energy data. The Kramers–Krönig transform of the real part of greater range is obtained by extrapolation of the real part. The calculation is time-consuming but meaningful. The long-wave results are similar to the experimental data of the photon and are useful for related investigation of properties of wide-gap semiconductors such as electron scattering like the Auger recombination and impact ionization.
Received: 28 November 2016      Published: 28 February 2017
PACS:  03.65.-w (Quantum mechanics)  
  63.20.dk (First-principles theory)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFB0400102, the National Basic Research Program of China under Grant Nos 2012CB3155605, 2013CB632804, 2014CB340002 and 2015CB351900, the National Natural Science Foundation of China under Grant Nos 61574082, 61210014, 61321004, 61307024 and 51561165012, the High Technology Research and Development Program of China under Grant No 2015AA017101, the Tsinghua University Student Research Training Projects under Grant No 1611T0157, the Tsinghua University Initiative Scientific Research Program under Grant Nos 2013023Z09N and 2015THZ02-3, the Open Fund of the State Key Laboratory on Integrated Optoelectronics under Grant No IOSKL2015KF10, the CAEP Microsystem and THz Science and Technology Foundation under Grant No CAEPMT201505, the Science Challenge Project under Grant No JCKY2016212A503, and the Guangdong Province Science and Technology Program under Grant No 2014B010121004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/030303       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/030303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Wei Zhu
Ji-Yuan Zheng
Lai Wang
Bing Xiong
Chang-Zheng Sun
Zhi-Biao Hao
Yi Luo
Yan-Jun Han
Jian Wang
Hong-Tao Li
[1]Cho J, Schubert E F and Kim J K 2013 Laser Photon. Rev. 7 408
[2]Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G and Zanoni E 2013 J. Appl. Phys. 114 071101
[3]Delaney K T, Rinke P and van de Walle C G 2009 Appl. Phys. Lett. 94 191109
[4]Bertazzi F, Zhou X, Goano M, Ghione G and Bellotti E 2013 Appl. Phys. Lett. 103 081106
[5]Binder M, Nirschl A, Zeisel R, Hager T, Lugauer H, Sabathil M, Bougeard D, Wagner J and Galler B 2013 Appl. Phys. Lett. 103 071108
[6]Kunikiyo T, Takenaka M, Morifuji M, Taniguchi K and Hamaguchi C 1996 J. Appl. Phys. 79 7718
[7]Li G, Qin Z X, Luo G, Shen B and Zhang G 2010 Semicond. Sci. Technol. 25 115010
[8]Lindhard J 1954 Mat. -Fys. Medd. -K. Dan. Vidensk. Selsk. 28 1
[9]Penn D R 1962 Phys. Rev. 128 2093
[10]Forouhi A R and Bloomer I 1988 Phys. Rev. B 38 1865
[11]Djurisic A B, Chan Y C and Li E H 2002 Appl. Phys. A 74 669
[12]Walter J P and Cohen M L 1972 Phys. Rev. B 5 26
[13]Ehrenreich H and Cohen M H 1959 Phys. Rev. 115 786
[14]Walter J P and Cohen M L 1970 Phys. Rev. B 2 1821
[15]Sramek S J and Cohen M L 1972 Phys. Rev. B 6 3800
[16]Djurisic A B and Li E H 2001 J. Appl. Phys. 89 273
[17]Kolnik J, Oguzman I H, Brennan K F, Wang R P, Riden P P and Wang Y 1995 J. Appl. Phys. 78 1033
[18]Goano M, Bellotti E and Ghillino E 2000 J. Appl. Phys. 88 6467
[19]Cobet C, Goldhahn R and Richter W 2009 Phys. Status Solidi B 246 1440
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 030303
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 030303
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 030303
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 030303
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 030303
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 030303
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 030303
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 030303
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 030303
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 030303
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 030303
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 030303
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 030303
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 030303
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 030303
Viewed
Full text


Abstract