CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe |
Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He**, Yong-Bing Xu**, Rong Zhang |
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
Ke-Jie Wang, Wei Wang, Min-Hao Zhang et al 2017 Chin. Phys. Lett. 34 026201 |
|
|
Abstract Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spintronic applications. In this work, we successfully synthesize PbTe nanowires via the chemical vapor deposition method and demonstrate the existence of topological surface states by their 2D weak anti-localization effect and Shubnikov–de Haas oscillations. More importantly, the surface state contributes $\sim$61% of the total conduction, suggesting dominant surface transport in PbTe nanowires at low temperatures. Our work provides an experimental groundwork for researching TCIs and is a step forward for the applications of PbTe nanowires in spintronic devices.
|
|
Received: 11 October 2016
Published: 25 January 2017
|
|
PACS: |
62.23.Hj
|
(Nanowires)
|
|
81.07.Gf
|
(Nanowires)
|
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
05.60.Gg
|
(Quantum transport)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300803, the National Basic Research Program of China under Grant No 2014CB921101, and the National Natural Science Foundation of China under Grant Nos 61474061 and 61674079. |
|
|
[1] | Fu L 2011 Phys. Rev. Lett. 106 106802 | [2] | Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 | [3] | Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802 | [4] | Wang Q, Wang F, Li J, Wang Z, Zhan X and He J 2015 Small 11 4613 | [5] | Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 | [6] | Wang Q, Safdar M, Wang Z and He J 2013 Adv. Mater. 25 3915 | [7] | Kong D and Cui Y 2011 Nat. Chem. 3 845 | [8] | Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nat. Mater. 11 1023 | [9] | Xu S Y, Liu C, Alidoust N, Neupane M, Qian D, Belopolski I, Denlinger J D, Wang Y J, Lin H, Wray L A, Landolt G, Slomski B, Dil J H, Marcinkova A, Morosan E, Gibson Q, Sankar R, Chou F C, Cava R J, Bansil A and Hasan M Z 2012 Nat. Commun. 3 1192 | [10] | Safdar M, Wang Q, Mirza M, Wang Z, Xu K and He J 2013 Nano Lett. 13 5344 | [11] | Li Z, Shao S, Li N, McCall K, Wang J and Zhang S X 2013 Nano Lett. 13 5443 | [12] | Kong D, Dang W, Cha J J, Li H, Meister S, Peng H, Liu Z and Cui Y 2010 Nano Lett. 10 2245 | [13] | Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225 | [14] | Altshuler B L, Aronov A G and Khmelnitsky D E 1982 J. Phys. C 15 7367 | [15] | Tanaka Y, Ren Z, Sato T et al 2012 Nat. Phys. 8 800 | [16] | Tanaka Y, Sato T, Nakayama K, Souma S, Takahashi T, Ren Z, Novak M, Segawa K and Ando Y 2013 Phys. Rev. B 87 155105 | [17] | Kong D, Randel J C, Peng H, Cha J J, Meister S, Lai K, Chen Y, Shen Z X, Manoharan H C and Cui Y 2010 Nano Lett. 10 329 | [18] | Cha J J, Kong D, Hong S S, Analytis J G, Lai K and Cui Y 2012 Nano Lett. 12 1107 | [19] | He L, Xiu F X, Wang Y, Fedorov A V, Huang G, Kou X F, Lang M, Beyermann W P, Zou J and Wang K L 2011 J. Appl. Phys. 109 103702 | [20] | Zhang C, Liu Y, Yuan X, Wang W, Liang S and Xiu F 2015 Nano Lett. 15 2161 | [21] | Bao L H, He L, Meyer N, Kou X F, Zhang P, Chen Z G, Fedorov A V, Zou J, Riedemann T M and Lograsso T A 2012 Sci. Rep. 2 726 | [22] | He H T, Wang G, Zhang T, Sou I K, Wong G K, Wang J N, Lu H Z, Shen S Q and Zhang F C 2011 Phys. Rev. Lett. 106 166805 | [23] | van Hove J M, Pukite P R and Cohen P I 1985 J. Vac. Sci. Technol. B 3 563 | [24] | Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707 | [25] | Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602 | [26] | Matsuo S, Koyama T, Shimamura K, Arakawa T, Nishihara Y, Chiba D, Kobayashi K, Ono T, Chang C, He K, Ma X C and Xue Q K 2012 Phys. Rev. B 85 075440 | [27] | Analytis J G, McDonald R D, Riggs S C, Chu J, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960 | [28] | Ohta E and Sakata M 1979 Solid-State Electron. 22 677 | [29] | Taskin A A and Ando Y 2009 Phys. Rev. B 80 085303 | [30] | Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K L 2011 Nat. Nanotechnol. 6 216 | [31] | Eto K, Ren Z, Taskin A A, Segawa K and Ando Y 2010 Phys. Rev. B 81 195309 | [32] | Taskin A A, Yang F, Sasaki S, Segawa K and Yoichi A 2014 Phys. Rev. B 89 121302 | [33] | Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 | [34] | Fang L, Jia Y, Miller D J, Latimer M L, Xiao Z L, Welp U, Crabtree G W and Kwok W K 2012 Nano Lett. 12 6164 | [35] | Hong S S, Cha J J, Kong D and Cui Y 2012 Nat. Commun. 3 757 | [36] | Analytis J G, Chu J, Chen Y L, Corredor F, McDonald R D, Shen Z X and Fisher I R 2010 Phys. Rev. B 81 205407 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|