Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 016101    DOI: 10.1088/0256-307X/34/1/016101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Optimal Bandgap of Double Perovskite La-Substituted Bi$_{2}$FeCrO$_{6}$ for Solar Cells: an ab initio GGA+$U$ Study
B. Merabet1,2**, H. Alamri3, M. Djermouni2,4, A. Zaoui2, S. Kacimi2, A. Boukortt5, M. Bejar6
1Electrotechnics Department, Faculty of Technology, Mustapha Stambouli University, Mascara 29000, Algeria
2Computational Materials Physics Laboratory, UDL-SBA 22000, Algeria
3Physics Department-University College, Umm Al-Qura University, Makkah, Saudi Arabia
4Centre Universitaire Ahmed Zabana, Relizane 48000, Algeria
5Elaboration Characterization Physico-Mechanics of Materials and Metallurgical Laboratory ECP3M, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000, Algeria
6Laboratoire de Physique Appliquée, Faculté des Sciences, Université de Sfax, Sfax 3000, Tunisie
Cite this article:   
B. Merabet, H. Alamri, M. Djermouni et al  2017 Chin. Phys. Lett. 34 016101
Download: PDF(1239KB)   PDF(mobile)(1216KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ab initio generalized gradient approximation (GGA)+$U$ study of multiferroic (La$_{0.5}$Bi$_{0.5}$)$_{2}$FeCrO$_{6}$ in pnma structure and ferri-magnetic order, including Hubbard corrections ($U=4.1$ eV) for transition metal/rare earth $d$-electrons with 20 atoms cell, shows optimum local magnetic moments of (Cr$^{3+}$, Fe$^{3+})$ equal to ($-$2.56, 4.14) $\mu$B and an ideal spin-down band gap of 1.54 eV. Tuned-band gap La-substituted double oxide perovskites BFCO should exhibit enhanced visible-light absorption and carrier mobility, thus could be convenient light absorbers and then efficient alternatives to wide-gap chalcopyrite absorber-based solar cells failing to achieve highest power conversion efficiencies, and even compete with their metal-organic halide perovskites counterparts.
Received: 26 August 2016      Published: 29 December 2016
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  73.22.Pr (Electronic structure of graphene)  
  78.56.-a (Photoconduction and photovoltaic effects)  
  78.67.Wj (Optical properties of graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/1/016101       OR      https://cpl.iphy.ac.cn/Y2017/V34/I1/016101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
B. Merabet
H. Alamri
M. Djermouni
A. Zaoui
S. Kacimi
A. Boukortt
M. Bejar
[1]Butler K T, Frost J M and Walsh A 2015 Energy Environ. Sci. 8 838
Yuan Y, Xiao Z, Yang B and Huang J 2014 J. Mater. Chem. A 2 6027
[2]Hu Z, Tian M, Nysten B and Jonas A M 2009 Nat. Mater. 8 62
Scott J F 2007 Science 315 954
[3]Garcia V and Bibes M 2012 Nature 483 279
Lee D, Yang S M, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B and Noh T W 2012 Adv. Mater. 24 402
[4]Fan Z, Sun K and Wang J 2015 J. Mater. Chem. A 3 18809
[5]Shockley W 1961 J. Appl. Phys. 32 510
[6]Bennett J W, Grinberg I and Rappe A M 2008 J. Am. Chem. Soc. 130 17409
Berger R F and Neaton J B 2012 Phys. Rev. B 86 165211
[7]Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosei F 2014 Nat. Photon. 9 61
[8]Wang H, Gou G Y and Li J 2016 Nano Energy 22 507
[9]Khare A, Singh A, Prabhu S S and Rana D S 2013 Appl. Phys. Lett. 102 192911
[10]Seshadri R and Hill N A 2001 Chem. Mater. 13 2892
[11]Alexe M and Hesse D 2011 Nat. Commun. 2 256
[12]Gonzalez-V O E, WojdełJ C, Diéguez O and Íñiguez J 2012 Phys. Rev. B 85 064119
[13]Zalesskii A V, Frolov A A, Khimich T A and Bush A A 2003 Phys. Solid State 45 141
[14]Vijayanandhini K, Simon Ch, Pralong V, Bréard Y, Caignaert V, Raveau B, Mandal P, Sundaresan A and Rao C N R 2009 J. Phys.: Condens. Matter 21 486002
Vijayanandhini K, Simon Ch, Pralong V, Caignaert V and Raveau B 2009 Phys. Rev. B 79 224407
[15]Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[16]Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2k An Augmented Plane Wave Plus Local Orbitals Program For Calculating Cryst. Properties Vienna University Technol. Austria (ISBN 3-9501031-1-2)
[17]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18]Singh D 1994 Plane Waves Pseudopotentials and the LAPW method (Boston: Kluwer Academic)
[19]Liechtenstein A I, Anisimov V I and Zaane J 1995 Phys. Rev. B 52 R5467
[20]Baettig P, Ederer C and Spaldin N A 2005 Phys. Rev. B 72 214105
[21]Dudarev S L 1998 Phys. Rev. B 57 1505
[22]Blochl E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[23]Blochl P E 1994 Phys. Rev. B 50 17953
[24]Ueda K, Tabata H and Kawai T 1998 Science 280 1064
[25]Miura K and Terakura K 2001 Phys. Rev. B 63 104402
[26]Nechache R, Harnagea C, Carignan L P, Gautreau O, Pintilie L, Singh M P, Ménard D, Fournier P, Alexe M and Pignolet A 2009 J. Appl. Phys. 105 061621
[27]Kanamori J 1959 J. Phys. Chem. Solids 10 87
[28]Suchomel M R, Thomas C I, Allix M, Rosseinsky M J, Fogg A M and Thomas M F 2007 Appl. Phys. Lett. 90 112909
[29]Garcia F G, Riccardi C S and Simoes A Z 2010 J. Alloys Compd. 501 25
[30]Cheng Z X, Li A H, Wang X L, Dou S X, Ozawa K, Kimura H, Zhang S J and Shrout T R 2008 J. Appl. Phys. 103 07E507
[31]Selbach S M, Einarsrud M A and Grande T 2009 Chem. Mater. 21 169
Goldschmidt V M 1926 Naturwissenschaften 14 477
[32]Ju S and Guo G Y 2008 Appl. Phys. Lett. 92 202504
[33]Song Z W and Liu B G 2013 Chin. Phys. B 22 047506
[34]Woodward P M 1997 Acta Crystallograllogr. B: Struct. Sci. 53 32
[35]Nakamura T and Choy J H J 1977 Solid State Chem. 20 233
[36]Rondinelli J M, May S J and Freeland J W 2012 MRS Bull. 37 261
[37]Goodenough J B 1998 Jahn-Teller Phenom. Solids Annu. Rev. Mater. Sci. 28 27
[38]Catalan G and Scott J F 2009 Adv. Mater. 21 2463
Related articles from Frontiers Journals
[1] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 016101
[2] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 016101
[3] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 016101
[4] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 016101
[5] M. Kr. Deka, A. N. Dev. Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma[J]. Chin. Phys. Lett., 2020, 37(1): 016101
[6] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 016101
[7] Jian-Hui Chen, Cheng Cai, Xiu-Jun Fu. Decagonal and Dodecagonal Quasicrystals Obtained by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2019, 36(3): 016101
[8] Mei-Zhe Lv, Bin Xu, Li-Chao Cai, Feng Jia, Xing-Dong Yuan. Analysis of Transition Mechanism of Cubic Boron Nitride Single Crystals under High Pressure-High Temperature with Valence Electron Structure Calculation[J]. Chin. Phys. Lett., 2019, 36(1): 016101
[9] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 016101
[10] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 016101
[11] Kanokwan Kanchiang, Phakkhananan Pakawanit, Rattikorn Yimnirun. Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation[J]. Chin. Phys. Lett., 2017, 34(8): 016101
[12] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 016101
[13] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 016101
[14] LI Xiao-Tian, YANG Xiao-Bao, ZHAO Yu-Jun. Quasilattice-Conserved Optimization of the Atomic Structure of Decagonal Al-Co-Ni Quasicrystals[J]. Chin. Phys. Lett., 2015, 32(03): 016101
[15] YAO Gang, CHEN Yu, AN Xin-You, JIANG Zhong-Qian, CAO Lin-Hong, WU Wei-Dong, ZHAO Yan . First-Principles Study of the Structural, Electronic and Optical Properties of Hexagonal LiIO3[J]. Chin. Phys. Lett., 2013, 30(6): 016101
Viewed
Full text


Abstract