CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication |
Jia-Min Gong1, Quan Wang1,2**, Jun-Da Yan2, Feng-Qi Liu2, Chun Feng2, Xiao-Liang Wang2, Zhan-Guo Wang2 |
1School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121 bKey Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
Jia-Min Gong, Quan Wang, Jun-Da Yan et al 2016 Chin. Phys. Lett. 33 117303 |
|
|
Abstract AlGaN/GaN high electron mobility transistors (HEMTs) grown on Fe-modulation-doped (MD) and unintentionally doped (UID) GaN buffer layers are investigated and compared. Highly resistive GaN buffers (10$^{9}$ $\Omega$$\cdot$cm) are induced by individual mechanisms for the electron traps' formation: the Fe MD buffer (sample A) and the UID buffer with high density of edge-type dislocations ($7.24\times10^{9}$ cm$^{-2}$, sample B). The 300 K Hall test indicates that the mobility of sample A with Fe doping (2503 cm$^{2}$V$^{-1}$s$^{-1}$) is much higher than sample B (1926 cm$^{2}$V$^{-1}$s$^{-1})$ due to the decreased scattering effect on the two-dimensional electron gas. HEMT devices are fabricated on the two samples and pulsed $I$–$V$ measurements are conducted. Device A shows better gate pinch-off characteristics and a higher threshold voltage ($-$2.63 V) compared with device B ($-$3.71 V). Lower gate leakage current $|I_{\rm GS}|$ of device A ($3.32\times10^{-7}$ A) is present compared with that of device B ($8.29\times10^{-7}$ A). When the off-state quiescent points $Q_{2}$ ($V_{\rm GQ2}=-8$ V, $V_{\rm DQ2}=0$ V) are on, $V_{\rm th}$ hardly shifts for device A while device B shows +0.21 V positive threshold voltage shift, resulting from the existence of electron traps associated with the dislocations in the UID-GaN buffer layer under the gate. Under pulsed $I$–$V$ and transconductance $G_{\rm m}$–$V_{\rm GS}$ measurement, the device with the Fe MD-doped buffer shows more potential in improving reliability upon off-state stress.
|
|
Received: 12 July 2016
Published: 28 November 2016
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61204017 and 61334002, the National Basic Research Program of China, and the National Science and Technology Major Project of China. |
|
|
[1] | Ikeda N, Niiyama Y, Kambayashi H, Sato Y, Nomura T, Kato S and Yoshida S 2010 Proc. IEEE 98 1151 | [2] | Mishra U K, Shen L, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287 | [3] | Cao Y, Zimmermann T, Xing H L and Jena D 2010 Appl. Phys. Lett. 96 042102 | [4] | Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K and Speck J S 2004 J. Vac. Sci. Technol. B 22 1145 | [5] | Lee W, Ryou J H, Yoo D, Limb J, Dupuis R D, Hanser D, Preble E, Williams N M and Evans K 2007 Appl. Phys. Lett. 90 093509 | [6] | Bougrioua Z, Azize M, Lorenzini P, Laügt M and Haas H 2005 Phys. Status Solidi A 202 536 | [7] | Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377 | [8] | Cheong M G, Kim K S, Oh C S, Namgung N W, Yang G M, Hong C H, Lim K Y, Suh E K, Nahm K S, Lee H J, Lim D H and Yoshikawa A 2000 Appl. Phys. Lett. 77 2557 | [9] | Xu F J, Xu J, Shen B, Miao Z L, Huang S, Lu L, Yang Z J, Qin Z X and Zhang G Y 2008 Thin Solid Films 517 588 | [10] | Wang X L, Chen T S, Xiao H L, Wang C M, Hu G X, Luo W J, Tang J, Guo L C and Li J M 2008 Solid-State Electron. 52 926 | [11] | Hsu J W P, Manfra M J, Molnar R J, Heying B and Speck J S 2002 Appl. Phys. Lett. 81 79 | [12] | Ganguly S, Konar A, Hu Z Y, Xing H L and Jena D 2012 Appl. Phys. Lett. 101 253519 | [13] | ?apajna M, Kaun S W, Wong M H, Gao F, Palacios T, Mishra U K, Speck J S and Kuball M 2011 Appl. Phys. Lett. 99 223501 | [14] | Peng E C, Wang X L, Xiao H L, Wang C M, Yin H B, Chen H, Feng C, Jiang L J, Hou X and Wang Z G 2013 J. Cryst. Growth 383 25 | [15] | Wang X L, Hu G X, Ma Z Y, Ran J X, Wang C M, Xiao H L, Tang J, Li J P, Wang J X, Zeng Y P, Li J M and Wang Z G 2007 J. Cryst. Growth 298 835 | [16] | Selvaraj S L, Suzue T and Egawa T 2009 IEEE Electron Device Lett. 30 587 | [17] | Srikant V, Speck J S and Clarke D R 1997 J. Appl. Phys. 82 4286 | [18] | Jena D, Gossard A C and Mishra U K 2000 Appl. Phys. Lett. 76 1707 | [19] | Lisesivdin S B, Yildiz A, Balkan N, Kasap M, Ozcelik S and Ozbay E 2010 J. Appl. Phys. 108 013712 | [20] | Chini A, Soci F, Meneghini M, Meneghesso G and Zanoni E 2013 IEEE Trans. Electron Devices 60 3176 | [21] | Chen W J, Wong K Y, Huang W and Chen K J 2008 Appl. Phys. Lett. 92 253501 | [22] | Silvestri M, Uren M J and Kuball M 2013 Appl. Phys. Lett. 102 073501 | [23] | Yan D W, Lu H, Cao D, Chen D S, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 97 153503 | [24] | Meneghini M, Ronchi N, Stocco A, Meneghesso G, Mishra U K, Pei Y and Zanoni E 2011 IEEE Trans. Electron Devices 58 2996 | [25] | Cardwell D W, Sasikumar A, Arehart A R, Kaun S W, Lu J, Keller S, Speck J S, Mishra U K, Ringel S A and Pelz J P 2013 Appl. Phys. Lett. 102 193509 | [26] | Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Devices 48 560 | [27] | Liu S, Yang S, Tang Z K, Jiang Q M, Liu C, Wang M J, Shen B and Chen K J 2015 Appl. Phys. Lett. 106 051605 | [28] | Lu B and Palacios T 2010 IEEE Electron Device Lett. 31 951 | [29] | Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2003 IEEE Trans. Electron Devices 50 2015 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|