Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100201    DOI: 10.1088/0256-307X/33/10/100201
GENERAL |
A Short Note on a Differential-Difference Gauge Transformation and a New Spectral Problem
Kui Chen, Da-Jun Zhang**
Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
Kui Chen, Da-Jun Zhang 2016 Chin. Phys. Lett. 33 100201
Download: PDF(220KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We show that a class of spectral problems are related to the spectral problem of the Volterra lattice through a gauge transformation. The transformation is given. We hope that our discussion can draw attention to the study of gauge transformation theory of differential-difference integrable systems.
Received: 05 June 2016      Published: 27 October 2016
PACS:  02.30.Ik (Integrable systems)  
  02.30.Ks (Delay and functional equations)  
  05.45.Yv (Solitons)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11371241.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kui Chen
Da-Jun Zhang
[1]Suris Y B 2003 The Problem of Integrable Discretization: Hamiltonian Approach (Basel: Birkh?user Verlag)
[2]Zhang N and Xia T C 2015 Int. J. Nonlinear Sci. Numer. Simul. 16 301
[3]Tian C 1995 Symmetry in Soliton Theory and its Applications (Berlin: Springer-Verlag)
[4]Chen D Y 2006 Introduction to Soliton Theory (Beijing: Science Press)
[5]Chen D Y and Zhang D J 2003 Commun. Theor. Phys. 40 127
[6]Wen X Y 2011 Rep. Math. Phys. 67 259
[7]Chen X H and Zhang H Q 2013 Chin. Phys. B 22 030203
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 100201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 100201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 100201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 100201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 100201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 100201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 100201
Viewed
Full text


Abstract