Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 093401    DOI: 10.1088/0256-307X/33/9/093401
ATOMIC AND MOLECULAR PHYSICS |
A New Simulation of Track Structure of Low-Energy Electrons in Liquid Water: Considering the Condensed-Phase Effect on Electron Elastic Scattering
Wei Liu1, Zhen-Yu Tan1**, C. Champion2
1School of Electrical Engineering, Shandong University, Jinan 250061
2Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, Gradignan 33175, France
Cite this article:   
Wei Liu, Zhen-Yu Tan, C. Champion 2016 Chin. Phys. Lett. 33 093401
Download: PDF(543KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new Monte Carlo simulation of the track structure of low-energy electrons ($ < $10 keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.
Received: 13 May 2016      Published: 30 September 2016
PACS:  34.80.-i (Electron and positron scattering)  
  79.20.Ap (Theory of impact phenomena; numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/093401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/093401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Liu
Zhen-Yu Tan
C. Champion
[1]Nikjoo H et al 1997 Int. J. Radiat. Biol. 71 467
[2]Nikjoo H et al 1998 Int. J. Radiat. Biol. 73 355
[3]Bouda?ffa B et al 2000 Science 287 1658
[4]Sanche L 2002 Mass Spectrom. Rev. 21 349
[5]Pan X et al 2003 Phys. Rev. Lett. 90 208102
[6]Berdys J et al 2004 J. Am. Chem. Soc. 126 6441
[7]Zheng Y et al 2006 Phys. Rev. Lett. 96 208101
[8]Denifl S et al 2007 Angew. Chem. Int. Ed. Engl. 46 5238
[9]Barrios R et al 2002 J. Phys. Chem. B 106 7991
[10]Chen Y et al 2008 Int. J. Mass Spectrom. 277 314
[11]Dumont A, Zheng Y, Hunting D and Sanche L 2010 J. Chem. Phys. 132 045102
[12]Kumar S V K, Pota T, Peri D, Dongre A D and Rao B J 2012 J. Chem. Phys. 137 045101
[13]Orlando T M, Oh D, Chen Y and Aleksandrov A B 2008 J. Chem. Phys. 128 195102
[14]Nikjoo H, Uehara S, Emfietzoglou D and Cucinotta F A 2006 Radiat. Meas. 41 1052
[15]Nikjoo H, Emfietzoglou D, Watanabe R and Uehara S 2008 Radiat. Phys. Chem. 77 1270
[16]Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2002 Molecular Biology of the Cell (New York: Garland Science)
[17]Emfietzoglou D, Karava K, Papamichael G and Moscovitch M 2003 Phys. Med. Biol. 48 2355
[18]Emfietzoglou D, Papamichael G, Androulidakis I, Karava K, Kostarelos K, Pathak A and Moscovitch M 2005 Nucl. Instrum. Methods B 228 341
[19]Jiang D J and Tan Z Y 2010 Chin. Phys. Lett. 27 033401
[20]Tan Z Y, Zhang L M, Wang J and Gao H X 2012 Trans. Chin. Electrotechnical Soc. 27 1 (in Chinese)
[21]Dingfelder M, Hantke D, Inokuti M and Paretzke H G 1999 Radiat. Phys. Chem. 53 1
[22]Cobut V, Frongillo Y, Patau J P, Goulet T, Fraser M J and Jay-Gerin J P 1998 Radiat. Phys. Chem. 51 229
[23]Emfietzoglou D and Moscovitch M 2002 Nucl. Instrum. Methods B 193 71
[24]Emfietzoglou D and Nikjoo H 2005 Radiat. Res. 163 98
[25]Emfietzoglou D, Cucinotta F A and Nikjoo H 2005 Radiat. Res. 164 202
[26]Itikawa Y and Mason N 2005 J. Phys. Chem. Ref. Data 34 1
[27]Mu?oz A, Oller J C, Blanco F, Gorfinkiel J D, Lim?o-Vieira P and García G 2007 Phys. Rev. A 76 052707
[28]Champion C, Incerti S, Aouchiche H and Oubaziz D 2009 Radiat. Phys. Chem. 78 745
[29]Oubaziz D, Champion C and Aouchiche H 2013 Phys. Rev. A 88 042709
[30]Champion C, Incerti S, Perrot Y, Delorme R, Bordage M C, Bardies M, Mascialino B, Tran H N, Ivanchenko V, Bernal M, Francis Z, Groetz J E, Fromm M and Campos L 2014 Appl. Radiat. Isot. 83 137
[31]Tan Z Y and He Y C 1998 Chin. Sci. Bull. 43 171
[32]Zhang L M and Tan Z Y 2010 Radiat. Environ. Biophys. 49 15
[33]Jablonski A, Salvat F and Powell C J 2003 NIST Electron. Elastic-Scattering Cross-Sec. Database-Version 3. 1[DB] (Gaithersburg: National Institute of Standards and Technology)
[34]Neuefeind J, Benmore C J, Tomberli B and Egelstaff P A 2002 J. Phys.: Condens. Matter 14 L429
[35]Bates D R and Massey H S W 1943 Philos. Trans. R. Soc. A 239 269
[36]Padial N T and Norcross D W 1984 Phys. Rev. A 29 1742
[37]Riley M E and Truhlar D G 1975 J. Chem. Phys. 63 2182
[38]Katase A, Ishibashi K, Matsumoto Y, Sakae T, Maezono S, Murakami E, Watanabe K and Maki H 1986 J. Phys. B 19 2715
[39]Danjo A and Nishimura H 1985 J. Phys. Soc. Jpn. 54 1224
[40]Ritchie R H 1959 Phys. Rev. 114 644
[41]Fernández-Varea J M, Mayol R, Liljequist D and Salvat F 1993 J. Phys.: Condens. Matter 5 3593
[42]Vriens L 1966 Phys. Rev. 141 88
[43]Uehara S, Nikjoo H and Goodhead D T 1992 Phys. Med. Biol. 37 1841
Related articles from Frontiers Journals
[1] GAO Xiang, LI Jia-Ming,. Precision Calculations of Atomic Polarizabilities: A Relevant Physical Quantity in Modern Atomic Frequency Standard[J]. Chin. Phys. Lett., 2010, 27(6): 093401
[2] JIANG Ding-Ju, TAN Zhen-Yu. A Monte Carlo Study of Low-Energy Electron Transport in Liquid Water: Influence of the Rutherford Formula and the Mott Model[J]. Chin. Phys. Lett., 2010, 27(3): 093401
[3] MA Er-Jun, , MA Yu-Gang, CAI Xiang-Zhou, FANG De-Qing, SHEN Wen-Qing, TIAN Wen-Dong. Electron Scattering by C4H10 and C6H6 in the Energy Range 100--1000eV[J]. Chin. Phys. Lett., 2008, 25(1): 093401
[4] SHI De-Heng, SUN Jin-Feng, MA Heng, ZHU Zun-Lue, YANG Xiang-Dong. Additivity Rule for Electron--Molecule Total Cross Section Calculations at 50--5000eV: A Geometrical Approach[J]. Chin. Phys. Lett., 2007, 24(10): 093401
[5] DU Chao-Ling, SUN Jin-Feng, LIU Yu-Fang, CHENG Guang-Xu, CHEN Yan-Feng. An Empirical Formula Approach to Total Cross Sections for Electron Scattering on Polyatomic Molecules[J]. Chin. Phys. Lett., 2005, 22(11): 093401
[6] SHI De-Heng, LIU Yu-Fang, SUN Jin-Feng, YANG Xiang-Dong, ZHU Zun-Lue,. Absolute Differential Cross Sections for Elastic Scattering of Electrons from CO at Intermediate and High Energies[J]. Chin. Phys. Lett., 2005, 22(2): 093401
[7] TAN Zhen-Yu, XIA Yue-Yuan, ZHAO Ming-Wen, LIU Xiang-Dong, HUANG Bo-Da, LI Feng, JI Yan-Ju. Monte Carlo Simulation on Energy Deposition of Low-Energy Electrons in Liquid Water[J]. Chin. Phys. Lett., 2005, 22(1): 093401
[8] SHI De-Heng, , LIU Yu-Fang, SUN Jin-Feng, YANG Xiang-Dong, ZHU Zun-Lue,. A New Semi-Empirical Method for Total Cross Sections of Electron Scattering from Spherical Polyatomic Molecules at 30-5000eV[J]. Chin. Phys. Lett., 2004, 21(9): 093401
[9] SHI De-Heng, , ZHU Zun-Lue, SUN Jin-Feng, YANG Xiang-Dong, LIU Yu-Fang, ZHAO Ye. Total Cross Sections for Electron Scattering from the Isoelectronic (Z = 14) Molecules (C2H2, CO, HCN and N2) at 100-5000 eV[J]. Chin. Phys. Lett., 2004, 21(3): 093401
[10] ZHAO Zeng-xiu, YUAN Jian-min, SUN Yong-sheng. Electron Interaction with Lithium Atoms and Electron Impact Broadening of the Lithium Resonance Line[J]. Chin. Phys. Lett., 1999, 16(12): 093401
[11] GAO Jun - fang, PANG Wen-ning, GAO Hong, SHANG Ren-cheng. A Semi-relativistic Distorted Wave Calculation of Electron Impact Excitation of Gold[J]. Chin. Phys. Lett., 1999, 16(9): 093401
[12] LU Pao, B. P. Nigam. Quasielastic Electron Scattering from 12C[J]. Chin. Phys. Lett., 1997, 14(5): 093401
Viewed
Full text


Abstract