Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 088101    DOI: 10.1088/0256-307X/33/8/088101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing
Yan-Yan Shen**, Yi-Xin Zhang, Ting Qi, Yu Qiao, Yu-Xin Jia, Hong-Jun Hei, Zhi-Yong He, Sheng-Wang Yu**
Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024
Cite this article:   
Yan-Yan Shen, Yi-Xin Zhang, Ting Qi et al  2016 Chin. Phys. Lett. 33 088101
Download: PDF(855KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cu ion implantation and subsequent rapid annealing at 500$^{\circ}\!$C in N$_{2}$ result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm$^{2}$V$^{-1}$S$^{-1}$ for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at $E_{0}=2.6$ V/μm, attaining a current density of 19.5 $\mu$A/cm$^{2}$ at an applied field of 3.5 V/μm. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron microscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation.
Received: 02 May 2016      Published: 31 August 2016
PACS:  81.05.ug (Diamond)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  73.25.+i (Surface conductivity and carrier phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/088101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/088101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Yan Shen
Yi-Xin Zhang
Ting Qi
Yu Qiao
Yu-Xin Jia
Hong-Jun Hei
Zhi-Yong He
Sheng-Wang Yu
[1]Yamaguchi H, Masuzawa T, Nozue S, Kudo Y, Saito I, Koe J, Kudo M, Yamada T, Takakuwa Y and Okano K 2009 Phys. Rev. B 80 165321
[2]Lv F X 2003 Physics 32 383
[3]Beloborodov I S, Zapol P, Gruen D M and Curtiss L A 2006 Phys. Rev. B 74 235434
[4]Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211
[5]Sankaran K J, Chen H C, Lee C Y, Tai N H and Lin I N 2012 Appl. Phys. Lett. 101 241604
[6]Birrell J, Gerbi J E, Auciello O, Gibson J M, Gruen D M and Carlisle J A 2003 J. Appl. Phys. 93 5606
[7]Arenal R, Bruno P, Miller D J, Bleuel M, Lal J and Gruen D M 2007 Phys. Rev. B 75 195431
[8]Talapatra S, Cheng J Y, Chakrapani N, Trasobares S, Cao A, Vajtai R, Huang M B and Ajayan P M 2006 Nanotechnology 17 305
[9]Zhu L L 2015 Chin. Phys. B 24 016201
[10]Zhang H, Yang S Y, Liu G P, Wang J X, Jin D D, Li H J, Liu X L, Zhu Q S and Wang Z G 2014 Chin. Phys. B 23 017305
[11]Zeng L, Xin Z, Chen S W, Du G, Kang J F and Liu X Y 2014 Chin. Phys. Lett. 31 027301
[12]Shen Y Y, QiaoY, He Z Y and Yu S W 2015 Mater. Lett. 139 322
[13]Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H and Hu H 2011 J. Appl. Phys. 109 053524
[14]Achatz P, Williams O A, Bruno P, Gruen D M, Garrido J A and Stutzmann M 2006 Phys. Rev. B 74 155429
[15]Wang R Z, Wang B and Yan H 2002 Physics 31 84
[16]Swiatowska J, Lair V, Pereira-Nabais C, Cote G, Marcus P and Chagnes A 2011 Appl. Surf. Sci. 257 9110
[17]Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
Related articles from Frontiers Journals
[1] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 088101
[2] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 088101
[3] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 088101
[4] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 088101
[5] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 088101
[6] HU Xiao-Jun, LI Nian. Oxygen Ion Implantation Enhanced Silicon-Vacancy Photoluminescence and n-Type Conductivity of Ultrananocrystalline Diamond Films[J]. Chin. Phys. Lett., 2013, 30(8): 088101
[7] FAN Xiao-Hong,XU Bin**,NIU Zhen,ZHAI Tong-Guang,TIAN Bin. Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(4): 088101
[8] YANG Yan-Ning, ZHANG Zhi-Yong**, ZHANG Fu-Chun, DONG Jun-Tang, ZHAO Wu, ZHAI Chun-Xue, ZHANG Wei-Hu. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds[J]. Chin. Phys. Lett., 2012, 29(1): 088101
[9] ZHANG Chun-Mei, ZHENG Yan-Bin, JIANG Zhi-Gang, LV Xian-Yi, HOU Xue, HU Shuang, LIU Jun-Wei. Effect of CO2 Addition on Preparation of Diamond Films by Direct-Current Hot-Cathode Plasma Chemical Vapor Deposition Method[J]. Chin. Phys. Lett., 2010, 27(8): 088101
[10] WANG Qi-Liang, LÜ, Xian-Yi, LI Liu-An, CHENG Shao-Heng, LI Hong-Dong. Growth and Characteristics of Freestanding Hemispherical Diamond Films by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2010, 27(4): 088101
Viewed
Full text


Abstract