CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing |
Yan-Yan Shen**, Yi-Xin Zhang, Ting Qi, Yu Qiao, Yu-Xin Jia, Hong-Jun Hei, Zhi-Yong He, Sheng-Wang Yu** |
Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024
|
|
Cite this article: |
Yan-Yan Shen, Yi-Xin Zhang, Ting Qi et al 2016 Chin. Phys. Lett. 33 088101 |
|
|
Abstract Cu ion implantation and subsequent rapid annealing at 500$^{\circ}\!$C in N$_{2}$ result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm$^{2}$V$^{-1}$S$^{-1}$ for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at $E_{0}=2.6$ V/μm, attaining a current density of 19.5 $\mu$A/cm$^{2}$ at an applied field of 3.5 V/μm. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron microscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation.
|
|
Received: 02 May 2016
Published: 31 August 2016
|
|
PACS: |
81.05.ug
|
(Diamond)
|
|
68.55.Ln
|
(Defects and impurities: doping, implantation, distribution, concentration, etc.)
|
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
|
|
|
[1] | Yamaguchi H, Masuzawa T, Nozue S, Kudo Y, Saito I, Koe J, Kudo M, Yamada T, Takakuwa Y and Okano K 2009 Phys. Rev. B 80 165321 | [2] | Lv F X 2003 Physics 32 383 | [3] | Beloborodov I S, Zapol P, Gruen D M and Curtiss L A 2006 Phys. Rev. B 74 235434 | [4] | Gruen D M 1999 Annu. Rev. Mater. Sci. 29 211 | [5] | Sankaran K J, Chen H C, Lee C Y, Tai N H and Lin I N 2012 Appl. Phys. Lett. 101 241604 | [6] | Birrell J, Gerbi J E, Auciello O, Gibson J M, Gruen D M and Carlisle J A 2003 J. Appl. Phys. 93 5606 | [7] | Arenal R, Bruno P, Miller D J, Bleuel M, Lal J and Gruen D M 2007 Phys. Rev. B 75 195431 | [8] | Talapatra S, Cheng J Y, Chakrapani N, Trasobares S, Cao A, Vajtai R, Huang M B and Ajayan P M 2006 Nanotechnology 17 305 | [9] | Zhu L L 2015 Chin. Phys. B 24 016201 | [10] | Zhang H, Yang S Y, Liu G P, Wang J X, Jin D D, Li H J, Liu X L, Zhu Q S and Wang Z G 2014 Chin. Phys. B 23 017305 | [11] | Zeng L, Xin Z, Chen S W, Du G, Kang J F and Liu X Y 2014 Chin. Phys. Lett. 31 027301 | [12] | Shen Y Y, QiaoY, He Z Y and Yu S W 2015 Mater. Lett. 139 322 | [13] | Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H and Hu H 2011 J. Appl. Phys. 109 053524 | [14] | Achatz P, Williams O A, Bruno P, Gruen D M, Garrido J A and Stutzmann M 2006 Phys. Rev. B 74 155429 | [15] | Wang R Z, Wang B and Yan H 2002 Physics 31 84 | [16] | Swiatowska J, Lair V, Pereira-Nabais C, Cote G, Marcus P and Chagnes A 2011 Appl. Surf. Sci. 257 9110 | [17] | Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|