Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 085204    DOI: 10.1088/0256-307X/33/8/085204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Magnetosonic Shocks in Ultra-Relativistic Dissipative Degenerate Plasmas
S. Hussain**, N. Akhtar, N. Mustafa
Theoretical Physics Division, PINSTECH, P. O. Nilore, Islamabad 44000, Pakistan
Cite this article:   
S. Hussain, N. Akhtar, N. Mustafa 2016 Chin. Phys. Lett. 33 085204
Download: PDF(377KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetosonic shock structures in dissipative magnetized degenerate electron ion plasma are studied. The two fluid quantum magnetohydrodynamic equations for non-degenerate ions and ultra-relativistic degenerate electron fluids with the Maxwell equations are presented. Using the reductive perturbation technique the Korteweg de Vries Burgers (KdVB) equation is derived and its solution is presented with the $\tanh$ method. Astrophysical plasma parameters are used to study the effects of variation of plasma density, magnetic field intensity and kinematic viscosity on the propagation characteristics of nonlinear shock structures in such plasma systems.
Received: 24 March 2016      Published: 31 August 2016
PACS:  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.35.Tc (Shock waves and discontinuities)  
  52.65.Vv (Perturbative methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/085204       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/085204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Hussain
N. Akhtar
N. Mustafa
[1]Chandrasekhar S 1935 Mon. Not. R. Astron. Soc. 95 207
[2]Misra A P and Shukla P K 2012 Phys. Rev. E 85 026409
[3]Zeba I, Moslem W M and Shukla P K 2012 Astrophys. J. 750 72
[4]Mahmood S, Sadiq S and Haque Q 2013 Phys. Plasmas 20 122305
[5]Roy N, Tasnim S and Mamun A A 2012 Phys. Plasmas 19 033705
[6]Hussain S, Mahmood S and Rehman A 2014 Phys. Plasmas 21 112901
[7]Kulsrud R M, Ostriker J P and Gunn J E 1972 Phys. Rev. Lett. 28 636
[8]Lee E, Parks G K, Wilbr M and Lin N 2009 Phys. Rev. Lett. 103 031101
[9]Zakharov Y P 2003 IEEE Trans. Plasma Sci. 31 1243
[10]Sultana S, Sarri G and Kourakis I 2012 Phys. Plasmas 19 012310
[11]Sahu B, Sinha A, Roychoudhury R and Khan M 2013 Phys. Plasmas 20 112303
[12]Meyer-Vernet N 2007 Basics of Solar Wind (Cambridge: Cambridge Press) p 56
[13]Sabry R, Moslem W M and Shukla P K 2012 Phys. Plasmas 19 122903
[14]Rasheed A, Tsintsadze N L and Murtaza G 2011 Phys. Plasmas 18 112701
[15]Washimi H and Tanuiti T 1966 Phys. Rev. Lett. 17 996
[16]Malfliet W 1992 Am. J. Phys. 60 650
[17]Hussain S, Rehman A, Hasnain H and Mustafa N 2015 Astrophys. Space Sci. 359 29
[18]Hussain S, Akhtar N and Hasnain H 2015 Astrophys. Space Sci. 360 25
Related articles from Frontiers Journals
[1] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 085204
[2] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 085204
[3] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 085204
[4] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 085204
[5] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 085204
[6] Yang Chen, Wenlu Zhang, Jian Bao, Zhihong Lin, Chao Dong, Jintao Cao, and Ding Li. Verification of Energetic-Particle-Induced Geodesic Acoustic Mode in Gyrokinetic Particle Simulations[J]. Chin. Phys. Lett., 2020, 37(9): 085204
[7] Chun-Hua Li, Zhen-Wei Xia, Ya-Ping Wang, Xiao-Hui Zhang. Propagation of Surface Modes in a Warm Non-Magnetized Quantum Plasma System[J]. Chin. Phys. Lett., 2016, 33(10): 085204
[8] Qi-Xin Wu, Zhen-Wei Xia, Wei-Hong Yang. Traveling Wave Solutions of the Incompressible Ideal Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2016, 33(06): 085204
[9] LIU Yuan-Tao, ZHAO Hua, LI Lei, FENG Yong-Yong. Solution of Magnetohydrodynamic Oscillations in Electrolytes with Ion-Neutral Collisions[J]. Chin. Phys. Lett., 2012, 29(11): 085204
[10] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 085204
[11] GUO Wen-Feng, WANG Shao-Jie, LI Jian-Gang. Numerical Investigation of Finite k Effect on Damping Rate of Geodesic Acoustic Mode in Collisionless Plasmas[J]. Chin. Phys. Lett., 2009, 26(4): 085204
[12] WANG De-Yu. Electron Acceleration by a Finite-Amplitude Solitary Kinetic Alfvén Wave[J]. Chin. Phys. Lett., 2009, 26(1): 085204
[13] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves[J]. Chin. Phys. Lett., 2008, 25(7): 085204
[14] HE Jin-Chun, CHEN Zong-Yun, YAN Tian, HUANG Nian-Ning. Inverse Scattering Transform in Squared Spectral Parameter for DNLS Equation under Vanishing Boundary Conditions[J]. Chin. Phys. Lett., 2008, 25(7): 085204
[15] WANG De-Yu, SONG Qi-Wu, YANG Lei. Electron Acceleration by Small-Amplitude Solitary Kinetic Alfven Wave in a Low-Beta Plasma[J]. Chin. Phys. Lett., 2008, 25(2): 085204
Viewed
Full text


Abstract