Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 084302    DOI: 10.1088/0256-307X/33/8/084302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy
Ting-Bo Fan1,2, Juan Tu1, Lin-Jiao Luo1, Xia-Sheng Guo1, Pin-Tong Huang3, Dong Zhang1,4**
1Key Laboratory of Modern Acoustics (Ministry of Education), Nanjing University, Nanjing 210093
2Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012
3Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009
4The State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Ting-Bo Fan, Juan Tu, Lin-Jiao Luo et al  2016 Chin. Phys. Lett. 33 084302
Download: PDF(674KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The relationship between the cavitation and acoustic peak negative pressure in the high-intensity focused ultrasound (HIFU) field is analyzed in water and tissue phantom. The peak negative pressure at the focus is determined by a hybrid approach combining the measurement with the simulation. The spheroidal beam equation is utilized to describe the nonlinear acoustic propagation. The waveform at the focus is measured by a fiber optic probe hydrophone in water. The relationship between the source pressure amplitude and the excitation voltage is determined by fitting the measured ratio of the second harmonic to the fundamental component at the focus, based on the model simulation. Then the focal negative pressure is calculated for arbitrary voltage excitation in water and tissue phantom. A portable B-mode ultrasound scanner is applied to monitor HIFU-induced cavitation in real time, and a passive cavitation detection (PCD) system is used to acquire the bubble scattering signals in the HIFU focal volume for the cavitation quantification. The results show that: (1) unstable cavitation starts to appear in degassed water when the peak negative pressure of HIFU signals reaches 13.5 MPa; and (2) the cavitation activity can be detected in tissue phantom by B-mode images and in the PCD system with HIFU peak negative pressures of 9.0 MPa and 7.8 MPa, respectively, which suggests that real-time B-mode images could be used to monitor the cavitation activity in two dimensions, while PCD systems are more sensitive to detect scattering and emission signals from cavitation bubbles.
Received: 18 April 2016      Published: 31 August 2016
PACS:  43.25.+y (Nonlinear acoustics)  
  43.80.+p (Bioacoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/084302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/084302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ting-Bo Fan
Juan Tu
Lin-Jiao Luo
Xia-Sheng Guo
Pin-Tong Huang
Dong Zhang
[1]Kennedy J E 2005 Nat. Rev. Cancer 5 321
[2]Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H and Chen W Z 2012 Chin. Phys. B 21 074301
[3]Merckel L G, Bartels L W, Kohler M O, Bongard H, Deckers R, Mali W, Binkert C A, Moonen C T, Gilhuijs K G and Bosch M A 2013 Cardiovasc. Intervent. Radiol. 36 292
[4]ter Haar G R 2002 Eur. J. Radiol. 41 217
[5]Stride E P and Coussios C C 2010 Proc. Inst. Mech. Eng. 224 171
[6]Hwang J H, Brayman A A, Reidy M A, Matula T J, Kimmey M B and Crum L A 2005 Ultrasound Med. Biol. 31 553
[7]Tung Y S, Vlachos F, Choi J J, Deffieux T, Selert K and Konofagou E E 2010 Phys. Med. Biol. 55 6141
[8]Wang D H, Jia P G, Wang S J, Zhao C L, Zeng D P, Wang H and Li F Q 2013 Appl. Phys. Lett. 103 044102
[9]Chen T, Fan T, Zhang W, Qiu Y, Tu J, Guo X and Zhang D 2014 J. Appl. Phys. 115 114902
[10]Qiu Y, Luo Y, Zhang Y, Cui W C, Zhang D, Wu J R, Zhang J F and Tu J 2010 J. Control. Release 145 40
[11]Yu J, Cen C Y, Chen G, Guo X S, Ma Y, Tu J and Zhang D 2014 Chin. Phys. Lett. 31 034302
[12]Chen T, Qiu Y, Fan T and Zhang D 2013 Chin. Phys. Lett. 30 074302
[13]Fan T B, Liu Z B, Zhang D and Tang M X 2013 IEEE Trans. Biomed. Eng. 60 763
[14]Tu J, Hwang J H, Matula T J, Brayman A A and Crum L A 2006 Ultrasound Med. Biol. 32 1601
[15]Tu J, Matula T J, Brayman A A and Crum L A 2006 Ultrasound Med. Biol. 32 281
Related articles from Frontiers Journals
[1] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 084302
[2] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 084302
[3] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 084302
[4] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 084302
[5] Hong-Hui Xue, Feng Shan, Xia-Sheng Guo, Juan Tu, Dong Zhang. Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan–Chen Lattice Boltzmann Model[J]. Chin. Phys. Lett., 2017, 34(8): 084302
[6] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 084302
[7] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 084302
[8] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 084302
[9] Ming-Liang Li, Ming-Xi Deng, Wu-Jun Zhu, Guang-Jian Gao, Yan-Xun Xiang. Numerical Perspective of Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2016, 33(12): 084302
[10] Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu, Bing-Bo Wei. A Videographic Study of Dynamic Phase Separation for Immiscible Solutions under Acoustic Levitation Condition[J]. Chin. Phys. Lett., 2016, 33(12): 084302
[11] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 084302
[12] Wu-Jun Zhu, Ming-Xi Deng, Yan-Xun Xiang, Fu-Zhen Xuan, Chang-Jun Liu. Second Harmonic Generation of Lamb Wave in Numerical Perspective[J]. Chin. Phys. Lett., 2016, 33(10): 084302
[13] Zhe-Fan Peng, Wei-Jun Lin, Shi-Lei Liu, Chang Su, Hai-Lan Zhang, Xiu-Ming Wang. Phase Relation of Harmonics in Nonlinear Focused Ultrasound[J]. Chin. Phys. Lett., 2016, 33(08): 084302
[14] DENG Ming-Xi, GAO Guang-Jian, LI Ming-Liang. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2015, 32(12): 084302
[15] CAO Hui, HUANG Wan-Jun, QIAO Jia-Ting, WANG Yun-Peng, ZHAO Hai-Jun. Research on Vibration Mechanism of Plant Cell Membrane with Ultrasonic Irradiation[J]. Chin. Phys. Lett., 2015, 32(03): 084302
Viewed
Full text


Abstract