Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 084202    DOI: 10.1088/0256-307X/33/8/084202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Extreme Light Concentration and High Absorption of the Double Cylindrical Microcavities
Hang Heng1**, Rong Wang2,3
1Center for Analysis and Testing, Nanjing Normal University, Nanjing 210097
2Department of Neurosurgery, Nanjing Drum Tower Hospital, Nanjing 210008
3The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008
Cite this article:   
Hang Heng, Rong Wang 2016 Chin. Phys. Lett. 33 084202
Download: PDF(668KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically study the enhancement factor of energy density and absorption efficiency inside the double cylindrical microcavities based on a triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings with a gold disk in the center and a metallic ground plane separated by a dielectric layer. We demonstrate that the multilayer structure with subwavelength electromagnetic confinement allows 10$^{4}$–10$^{5}$-fold enhancement of the electromagnetic energy density inside the double cavities and contains the most energy of the incoming light. Particularly, the enhancement factor of energy density $G$ shows strong ability of localizing light and some regularity as the change of the thickness of the dielectric slab and dielectric constant. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities operate in the range of 10–30 μm. We also calculate the absorption efficiency $C$, which can reach 95%, 97% and 95% at corresponding frequency by optimizing the structure's geometry parameters. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as absorbing elements in scientific and technical applications due to its extreme confinement, multiband absorption and polarization insensitivity.
Received: 12 April 2016      Published: 31 August 2016
PACS:  42.55.Sa (Microcavity and microdisk lasers)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/084202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/084202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hang Heng
Rong Wang
[1]Soukoulis C M and Wegener M 2010 Science 330 1633
[2]Huang X R, Peng R W and Fan R H 2010 Phys. Rev. Lett. 105 243901
[3]Fan R H, Peng R W, Huang X R, Li J and Liu Y 2012 Adv. Mater. 24 1980
[4]Grady N K, Heyes J E, Chowdhury D R, Zeng Y and Reiten M T 2013 Science 340 1304
[5]Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C and Wang M 2014 Phys. Rev. X 4 021026
[6]Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R and Wang M 2015 Adv. Mater. 27 1201
[7]Li A and Li S 2014 Nanoscale 6 12921
[8]Xu H 2004 Appl. Phys. Lett. 85 5980
[9]Kleinman S L, Ringe E, Valley N, Wustholz K L and Phillips E 2011 J. Am. Chem. Soc. 133 4115
[10]Park J 2014 Kobunshi Ronbunshu 71 387
[11]Shen W 2012 J. Mater. Chem. 22 8127
[12]Wuestner S, Pusch A, Tsakmakidis K L, Hamm J M and Hess O 2010 Phys. Rev. Lett. 105 127401
[13]Li Z F, Zhao R K, Koschny T and Kafesaki M 2010 Appl. Phys. Lett. 97 081901
[14]Li Z F, Alici K B, Colak E and Ozbay E 2011 Appl. Phys. Lett. 98 161907
[15]Krucker S, Hudson H S, Jeffrey N L S, Battaglia M and Kontar E P 2011 Astrophys. J. 739 96
[16]Tomer R, Ye L, Hsueh B and Deisseroth K 2014 Nat. Protoc. 9 1682
[17]Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[18]Wang B, Koschny T and Soukoulis C M 2009 Phys. Rev. B 80 033108
[19]Cheng Y Z and Yang H L 2010 J. Appl. Phys. 108 034906
[20]Shchegolkov D Y, Azad A K, O'Hara J F and Simakov E I 2010 Phys. Rev. B 82 205117
[21]Grant J, Ma Y, Saha S, Khalid A and Cumming D R S 2011 Opt. Lett. 36 3476
[22]Hao J M, Wang J, Liu X L, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104
[23]Liu X L, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[24]Xiong X, Jiang S C, Hu Y H, Peng R W and Wang M 2013 Adv. Mater. 25 3994
[25]Feuillet-Palma C, Todorow Y, Vasanelli A and Sirtori C 2013 Sci. Rep-UK 3 299
[26]Fevillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L and Sirtori C 2012 Opt. Express 20 29121
[27]Liao P F and Wokaun A 1982 J. Chem. Phys. 76 751
[28]Heng H, Yang L and Ye Y H 2014 Chin. Phys. Lett. 31 018101
Related articles from Frontiers Journals
[1] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 084202
[2] HENG Hang, YANG Li. Multi-Band Absorption Properties and Near-Field Enhancement in Mid-Infrared Based on the Interference Theory[J]. Chin. Phys. Lett., 2014, 31(05): 084202
[3] HENG Hang, YANG Li, YE Yong-Hong. Near-Field Enhancement and Absorption Properties of Metal-Dielectric-Metal Microcavities in the Mid-Infrared Range[J]. Chin. Phys. Lett., 2014, 31(1): 084202
[4] LIAN Jin, FU Jin-Xin, GAN Lin, LI Zhi-Yuan. Experimental Realization of a Magnetically Tunable Cavity in a Gyromagnetic Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(7): 084202
[5] WANG Shi-Jiang, HUANG Yong-Zhen, YANG Yue-De, HU Yong-Hong, XIAO Jin-Long, DU Yun. Output Characteristics of an InP/InGaAsP Triangle Microcavity Laser[J]. Chin. Phys. Lett., 2010, 27(1): 084202
[6] ZHOU Chang-Zhu, XIONG Zhi-Gang, LI Zhi-Yuan. High-Q Microcavity in Two-Dimensional Diamond Photonic Crystal Thin Films Realized via a Mode Gap[J]. Chin. Phys. Lett., 2009, 26(9): 084202
[7] CHEN Wei, XING Ming-Xin, ZHOU Wen-Jun, LIU An-Jin, ZHENG Wan-Hua. High Polarization Single Mode Photonic Crystal Microlaser[J]. Chin. Phys. Lett., 2009, 26(8): 084202
[8] ZHANG Xian-Gao, CHEN Kun-Ji, QIAN Bo, CHEN San, DING Hong-Lin, LIUKui, WANG Xiang, XU Jun, LI Wei, HUANG Xin-Fan. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity[J]. Chin. Phys. Lett., 2008, 25(5): 084202
[9] CHEN Qin, HUANG Yong-Zhen. WG-Like Modes Selectivity in a Square Cavity with Posts[J]. Chin. Phys. Lett., 2006, 23(6): 084202
[10] QIAN Bo, CHEN San, CEN Zhan-Hong, CHEN Kun-Ji, LIU Yan-Song, XU Jun, MA Zhong-Yuan, LI Wei, HUANG Xin-Fan. Step-by-Step Laser Crystallization of Amorphous Si:H/SiNx:H Multilayer for Active Layer in Microcavities[J]. Chin. Phys. Lett., 2006, 23(5): 084202
[11] SONG Feng, WU Zhao-Hui, LIU Shu-Jing, CAI Hong, TIAN Jian-Guo, ZHANG Guang-Yin, Boris Denker, Sergei Sverchkov. A Passive Q-Switched Microchip Er/Yb Glass Laser Pumped by Laser Diode[J]. Chin. Phys. Lett., 2006, 23(5): 084202
[12] WANG Gang, LUO Bin, PAN Wei, XIONG Jie. A Transfer Matrix-Based Analysis of Vertical-Cavity Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2005, 22(10): 084202
[13] CHEN San, QIAN Bo, WEI Jun-Wei, CHEN Kun-Ji, XU Jun, LI Wei, HUANG Xin-Fan. Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities[J]. Chin. Phys. Lett., 2005, 22(1): 084202
[14] WAN Xin-Jun, ZHANG Shu-Lian, LIU Gang, FEI Li-Gang. Self-Mixing Interference in Dual-Polarization Microchip Nd:YAG Lasers[J]. Chin. Phys. Lett., 2004, 21(11): 084202
[15] HUANG Zhan-Chao, WU Hui-Zhen. Design of Synthesized DBRs for Long-Wavelength InP-Based Vertical-Cavity Surface-Emitting Lasers[J]. Chin. Phys. Lett., 2004, 21(2): 084202
Viewed
Full text


Abstract