Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 076701    DOI: 10.1088/0256-307X/33/7/076701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap
Dong-Fang Zhang1,3, Tian-You Gao1,3, Ling-Ran Kong1,3, Kai Li1, Kai-Jun Jiang1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071
3University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong et al  2016 Chin. Phys. Lett. 33 076701
Download: PDF(670KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally produce the rubidium Bose–Einstein condensate in an optically plugged magnetic quadrupole trap. A far blue-detuned focused laser beam with a wavelength of 532 nm is plugged in the center of the magnetic quadrupole trap to increase the number of trapped atoms and to suppress the heating. An rf evaporative cooling in the magneto-optical hybrid trap is applied to decrease the atom temperature into degeneracy. The atom number of the condensate is $1.2(0.4)\times10^5$ and the temperature is below 100 nK. We also study characteristic behaviors of the condensate, such as phase space density, condensate fraction and anisotropic expansion.
Received: 19 April 2016      Published: 01 August 2016
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  67.10.Ba (Boson degeneracy)  
  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  37.10.De (Atom cooling methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/076701       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/076701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Fang Zhang
Tian-You Gao
Ling-Ran Kong
Kai Li
Kai-Jun Jiang
[1]Anderson M H et al 1995 Science 269 198
[2]Bradley C C et al 1995 Phys. Rev. Lett. 75 1687
[3]Davis K B et al 1995 Phys. Rev. Lett. 75 3969
[4]Bloom B J et al 2014 Nature 506 71
[5]Hinkley N et al 2013 Science 341 1215
[6]McDonald M et al 2015 Phys. Rev. Lett. 114 023001
[7]Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[8]Jin D S and Ye J 2012 Chem. Rev. 112 4801
[9]de Miranda M H G et al 2011 Nat. Phys. 7 502
[10]Horikoshi M et al 2010 Science 327 442
[11]Nascimbène S et al 2010 Nature 463 1057
[12]Schirotzek A et al 2009 Phys. Rev. Lett. 102 230402
[13]Nascimbène S et al 2009 Phys. Rev. Lett. 103 170402
[14]Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[15]Peng S G et al 2012 Phys. Rev. A 86 063610
[16]Günter K et al 2005 Phys. Rev. Lett. 95 230401
[17]Peng S G, Tan S N and Jiang K J 2014 Phys. Rev. Lett. 112 250401
[18]Esslinger T, Bloch I and H?nsch T W 1998 Phys. Rev. A 58 R2664
[19]Weber T 2002 Science 299 232
[20]Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404
[21]Lin Y J et al 2009 Phys. Rev. A 79 063631
[22]Naik D S and Raman C 2005 Phys. Rev. A 71 033617
[23]Dubessy R et al 2012 Phys. Rev. A 85 013643
[24]Heo M S, Choi J Y and Shin Y I 2011 Phys. Rev. A 83 013622
[25]Wu C H et al 2011 Phys. Rev. A 84 011601(R)
[26]Luo H et al 2013 Opt. Lett. 38 1161
[27]Li K et al 2015 Phys. Rev. A 92 013419
[28]Wu C H 2013 PhD Dissertation (Massachusetts: Massachusetts Institute of Technology)
[29]Andrews M R et al 1997 Science 275 637
[30]Dalfovo F et al 1999 Rev. Mod. Phys. 71 463
[31]Giorgini S, Pitaevskii L P and Stringari S 1996 Phys. Rev. A 54 R4633
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 076701
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 076701
[3] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 076701
[4] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 076701
[5] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 076701
[6] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 076701
[7] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 076701
[8] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 076701
[9] Xiao-Bin Ma, Zhu-Xiong Ye, Li-Yang Xie, Zhen Guo, Li You, Meng Khoon Tey. Measurement of S-Wave Scattering Length between $^6$Li and $^{88}$Sr Atoms Using Interspecies Thermalization in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2019, 36(7): 076701
[10] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 076701
[11] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 076701
[12] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 076701
[13] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 076701
[14] Qiang Zhu, Bing Wang, De-Zhi Xiong, Bao-Long Lü. Signature of Critical Point in Momentum Profile of Trapped Ultracold Bose Gases[J]. Chin. Phys. Lett., 2016, 33(07): 076701
[15] OUYANG Sheng-De, LIU Jing, XIANG Shao-Hua, SONG Ke-Hui. Ground State Property of a One-Dimensional Bose–Hubbard Model Using Time-Evolving Body Decimation[J]. Chin. Phys. Lett., 2013, 30(8): 076701
Viewed
Full text


Abstract