Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 074208    DOI: 10.1088/0256-307X/33/7/074208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber
N. Hisamuddin1, U. N. Zakaria2, M. Z. Zulkifli1,3, A. A. Latiff1, H. Ahmad1, S. W. Harun1,2**
1Photonics Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia
2Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
3Aston Institute of Photonics Technologies, Aston University, Birmingham B47ET, United Kingdom
Cite this article:   
N. Hisamuddin, U. N. Zakaria, M. Z. Zulkifli et al  2016 Chin. Phys. Lett. 33 074208
Download: PDF(815KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS$_{2})$ as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS$_{2}$ onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8 km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps$\cdot$nm$^{-1}$km$^{-1}$ of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 mW to 422 mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35 μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 mW. These results show that the mechanically exfoliated MoS$_{2}$ SA has a great potential to be used for pulse generation in Raman fiber laser systems.
Received: 16 April 2016      Published: 01 August 2016
PACS:  42.55.Wd (Fiber lasers)  
  42.55.Ye (Raman lasers)  
  42.60.Gd (Q-switching)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/074208       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/074208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
N. Hisamuddin
U. N. Zakaria
M. Z. Zulkifli
A. A. Latiff
H. Ahmad
S. W. Harun
[1]Baac H W, Uribe-Patarroyo N and Bouma B E 2014 Opt. Express 22 7113
[2]Nishizawa N 2014 Jpn. J. Appl. Phys. 53 090101
[3]Yao J, Yao J P, Wang Y, Tjin S C, Zhou Y, Lam Y L, Liu J and Lu C 2001 Opt. Commun. 191 341
[4]Bao Q and Loh K P 2012 ACS Nano 6 3677
[5]Bonaccorso F, Sun Z, Hasan T and Ferrari 2010 Nat. Photon. 4 611
[6]Azooz S, Harun S, Ahmad H, Halder A, Paul M C, Pal M and Bhadra S K 2015 Chin. Phys. Lett. 32 014204
[7]Peng H L, Dang W H, Cao J, Chen Y L, Wu D, Zheng W S, Li H, Shen Z X and Liu Z F 2012 Nat. Chem. 4 281
[8]Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S L, Zhang H J and Wang J Y 2013 Laser Photon. Rev. 7 L77
[9]Luo Z Q, Huang Y Z, Weng J, Cheng H H, Lin Z, Xu B, Cai Z P and Xu H Y 2013 Opt. Express 21 29516
[10]Luo Z Q, Liu C, Huang Y Z, Wu D D, Wu J Y, Xu H Y, Cai Z P, Lin Z Q, Sun L P and Weng J 2014 IEEE J. Sel. Top. Quantum Electron. 20 0902708
[11]Zhang H, Lu S B, Zheng J, Du J, Wen S, Tang D Y and Loh K P 2014 Opt. Express 22 7249
[12]Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591
[13]Wang J L, Wang X L, He B R, Wang Y G, Zhu J F and Wei Z Y 2015 Chin. Phys. Lett. 32 114202
[14]Wang Y B, Qi X H, Shen Y, Yao Y L, Xu Z J and Pan Y Z 2015 Acta Phys. Sin. 64 204205 (in Chinese)
[15]Harun S W, Ismail M A, Ahmad F, Ismail M F, Nor R M, Zulkepely N R and Ahmad H 2012 Chin. Phys. Lett. 29 114202
[16]Yao B Q, Cui Z, Duan X M, Shen Y J, Wang Ji and Du Y Q 2014 Chin. Phys. Lett. 31 074204
[17]Chi R H, Lu K C, Li Y G, Su H X, Dong X Y 2003 Chin. Phys. Lett. 20 234
[18]Yan P G, Ruan S C, Yu Y Q, Guo C Y, Guo Y and Liu C X 2006 Chin. Phys. Lett. 23 1476
[19]Saleh Z S, Anyi C L, Rahman A A, Ali N M, Harun S W, Manaf M and Arof H 2014 Ukr. J. Phys. Opt. 15 24
[20]Martinez A, Fuse K and Yamashita S 2011 Appl. Phys. Lett. 99 121107
[21]Yim C, O'Brien M, McEvoy N, Winters S, Mirza I, Lunney J G and Duesberg G S 2014 Appl. Phys. Lett. 104 103114
[22]Tongay S, Varnoosfaderani S S, Appleton B R, Wu J Q and Hebard A F 2012 Appl. Phys. Lett. 101 123105
[23]Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[24]Garmire E 2000 IEEE J. Sel. Top. Quantum Electron. 6 1094
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 074208
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 074208
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074208
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 074208
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 074208
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 074208
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 074208
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 074208
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 074208
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 074208
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 074208
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 074208
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 074208
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 074208
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 074208
Viewed
Full text


Abstract