Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 053201    DOI: 10.1088/0256-307X/33/5/053201
ATOMIC AND MOLECULAR PHYSICS |
Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb
Wei Xia1,2, Shao-Yang Dai1, Yin Zhang1, Kun-Qian Li1, Qi Yu1, Xu-Zong Chen1**
1Institute of Quantum Electronics, School of Electronics Engineering and Computer Sciences, Peking University, Beijing 100871
2Jiangsu Key Laboratory on Opto-electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210046
Cite this article:   
Wei Xia, Shao-Yang Dai, Yin Zhang et al  2016 Chin. Phys. Lett. 33 053201
Download: PDF(608KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The absolute frequency of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) two-photon transition at 778 nm is measured in an accuracy of 44 kHz. A home-made erbium-doped fiber laser frequency comb with frequency stability of $5.0\times10^{-13}$@1 s is employed for the light source. By using a periodically poled lithium niobate, the femtosecond pulse operating in 1556 nm is frequency-doubled to 778 nm to obtain the direct two-photon transition spectroscopy of thermal rubidium vapor. Through sweeping the carrier envelope offset frequency ($f_{\rm ceo}$), the 5$S_{1/2}$ ($F=2$)$\to $5$D_{5/2}$ ($F''=4$) two-photon transition line is clearly resolved and its absolute frequency is determined via the peak-finding of the fitting curve. After the frequency correction, the measured result agrees well with the previous experiment on this transition. The entire system configuration is compact and robust, providing a potential candidate of optical frequency standard for telecommunication applications.
Received: 04 January 2016      Published: 31 May 2016
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.30.Jc (Visible and ultraviolet spectra)  
  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/053201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/053201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Xia
Shao-Yang Dai
Yin Zhang
Kun-Qian Li
Qi Yu
Xu-Zong Chen
[1]Perrella C, Light P S, Anstie J D, Stace T M, Benabid F and Luiten A N 2013 Phys. Rev. A 87 013818
[2]Wu C M, Liu T W, Wu M H, Lee R K and Cheng W Y 2013 Opt. Lett. 38 3186
[3]Herbrich S, Al-Hadhuri T, Gericke K H, Shternin P S, Smolin A G and Vasyutinskii O S 2015 J. Chem. Phys. 142 024310
[4]Jin L, Zhang Y C, Xiang S S, Wang L R, Ma J, Zhao Y T, Xiao L T and Jia S T 2013 Chin. Phys. Lett. 30 103201
[5]Wang P J, Xiong D Z, Fu Z K and Zhang J 2011 Chin. Phys. B 20 016701
[6]Aumiler D, Ban T, Skenderovi? H and Pichler G 2005 Phys. Rev. Lett. 95 4
[7]Grove T T, Sanchezvillicana V, Duncan B C, Maleki S and Gould P L 1995 Phys. Scr. 52 271
[8]Snadden M J, Bell A S, Riis E and Ferguson A I 1996 Opt. Commun. 125 70
[9]Chui H C, Ko M S, Liu Y W, Shy J T, Peng J L and Ahn H 2005 Opt. Lett. 30 842
[10]Marian A, Stowe M C, Lawall J R, Felinto D and Ye J 2004 Science 306 2063
[11]Marian A, Stowe M C, Felinto D and Ye J 2005 Phys. Rev. Lett. 95 023001
[12]Dudovich N, Dayan B, Gallagher Faeder S M and Silberberg Y 2001 Phys. Rev. Lett. 86 47
[13]Dudovich N, Oron D and Silberberg Y 2004 Phys. Rev. Lett. 92 103003
[14]Barmes I, Witte S and Eikema K S E 2013 Phys. Rev. Lett. 111 023007
[15]Wu J, Hou D, Qin Z, Dai X, Zhang Z and Zhao J 2013 Opt. Lett. 38 5028
[16]Zhang S Y, Wu J T, Zhang Y L, Leng J X, Yang W P, Zhang Z G and Zhao J Y 2015 Sci. Rep. 5 15114
[17]Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201
[18]Wu J T, Hou D, Qin Z Y, Zhang Z G and Zhao J Y 2014 Phys. Rev. A 89 041402
[19]Bernard J E, Madej A A, Siemsen K J, Marmet L, Latrasse C, Touahri D, Poulin M, Allard M and Tetu M 2000 Opt. Commun. 173 357
[20]Farley J W and Wing W H 1981 Phys. Rev. A 23 2397
[21]Nez F, Biraben F, Felder R and Millerioux Y 1993 Opt. Commun. 102 432
Related articles from Frontiers Journals
[1] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 053201
[2] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 053201
[3] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 053201
[4] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 053201
[5] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 053201
[6] Yu-Xiong Duan, Bin Wang, Jing-Feng Xiang, Qian Liu, Qiu-Zhi Qu, De-Sheng Lü, Liang Liu. State Preparation in a Cold Atom Clock by Optical Pumping[J]. Chin. Phys. Lett., 2017, 34(7): 053201
[7] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 053201
[8] Yi-Chi Zhang, Peng-Rui Fan, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. High-Resolution Rb Two-Photon Transition Spectroscopy by a Femtosecond Frequency Comb via Pulses Control[J]. Chin. Phys. Lett., 2016, 33(11): 053201
[9] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 053201
[10] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 053201
[11] Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Two-Photon Transitions of $^{85}$Rb 5$D_{5/2}$ State by Using an Optical Frequency Comb and a Continuous-Wave Laser[J]. Chin. Phys. Lett., 2016, 33(02): 053201
[12] CAI Juan, YU Wei-Wei, ZHANG Nan. The Scaling Law in the Fine-Structure Splitting of 1s2np States for the Lithium Isoelectronic Sequence[J]. Chin. Phys. Lett., 2014, 31(09): 053201
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 053201
[14] JIN Li, ZHANG Yi-Chi, XIANG Shao-Shan, WANG Li-Rong, MA Jie, ZHAO Yan-Ting, XIAO Lian-Tuan, JIA Suo-Tang. Experimental Measurement of the Absolute Frequencies and Hyperfine Coupling Constants of 133Cs Using a Femtosecond Optical Frequency Comb[J]. Chin. Phys. Lett., 2013, 30(10): 053201
[15] GUO Jian, WANG Yan-Hui. Analysis of Laser-Diode and Lamp Optical Pumping for a Rubidium Beam[J]. Chin. Phys. Lett., 2013, 30(2): 053201
Viewed
Full text


Abstract