ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb |
Wei Xia1,2, Shao-Yang Dai1, Yin Zhang1, Kun-Qian Li1, Qi Yu1, Xu-Zong Chen1** |
1Institute of Quantum Electronics, School of Electronics Engineering and Computer Sciences, Peking University, Beijing 100871 2Jiangsu Key Laboratory on Opto-electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210046
|
|
Cite this article: |
Wei Xia, Shao-Yang Dai, Yin Zhang et al 2016 Chin. Phys. Lett. 33 053201 |
|
|
Abstract The absolute frequency of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) two-photon transition at 778 nm is measured in an accuracy of 44 kHz. A home-made erbium-doped fiber laser frequency comb with frequency stability of $5.0\times10^{-13}$@1 s is employed for the light source. By using a periodically poled lithium niobate, the femtosecond pulse operating in 1556 nm is frequency-doubled to 778 nm to obtain the direct two-photon transition spectroscopy of thermal rubidium vapor. Through sweeping the carrier envelope offset frequency ($f_{\rm ceo}$), the 5$S_{1/2}$ ($F=2$)$\to $5$D_{5/2}$ ($F''=4$) two-photon transition line is clearly resolved and its absolute frequency is determined via the peak-finding of the fitting curve. After the frequency correction, the measured result agrees well with the previous experiment on this transition. The entire system configuration is compact and robust, providing a potential candidate of optical frequency standard for telecommunication applications.
|
|
Received: 04 January 2016
Published: 31 May 2016
|
|
PACS: |
32.10.Fn
|
(Fine and hyperfine structure)
|
|
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
|
|
|
[1] | Perrella C, Light P S, Anstie J D, Stace T M, Benabid F and Luiten A N 2013 Phys. Rev. A 87 013818 | [2] | Wu C M, Liu T W, Wu M H, Lee R K and Cheng W Y 2013 Opt. Lett. 38 3186 | [3] | Herbrich S, Al-Hadhuri T, Gericke K H, Shternin P S, Smolin A G and Vasyutinskii O S 2015 J. Chem. Phys. 142 024310 | [4] | Jin L, Zhang Y C, Xiang S S, Wang L R, Ma J, Zhao Y T, Xiao L T and Jia S T 2013 Chin. Phys. Lett. 30 103201 | [5] | Wang P J, Xiong D Z, Fu Z K and Zhang J 2011 Chin. Phys. B 20 016701 | [6] | Aumiler D, Ban T, Skenderovi? H and Pichler G 2005 Phys. Rev. Lett. 95 4 | [7] | Grove T T, Sanchezvillicana V, Duncan B C, Maleki S and Gould P L 1995 Phys. Scr. 52 271 | [8] | Snadden M J, Bell A S, Riis E and Ferguson A I 1996 Opt. Commun. 125 70 | [9] | Chui H C, Ko M S, Liu Y W, Shy J T, Peng J L and Ahn H 2005 Opt. Lett. 30 842 | [10] | Marian A, Stowe M C, Lawall J R, Felinto D and Ye J 2004 Science 306 2063 | [11] | Marian A, Stowe M C, Felinto D and Ye J 2005 Phys. Rev. Lett. 95 023001 | [12] | Dudovich N, Dayan B, Gallagher Faeder S M and Silberberg Y 2001 Phys. Rev. Lett. 86 47 | [13] | Dudovich N, Oron D and Silberberg Y 2004 Phys. Rev. Lett. 92 103003 | [14] | Barmes I, Witte S and Eikema K S E 2013 Phys. Rev. Lett. 111 023007 | [15] | Wu J, Hou D, Qin Z, Dai X, Zhang Z and Zhao J 2013 Opt. Lett. 38 5028 | [16] | Zhang S Y, Wu J T, Zhang Y L, Leng J X, Yang W P, Zhang Z G and Zhao J Y 2015 Sci. Rep. 5 15114 | [17] | Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201 | [18] | Wu J T, Hou D, Qin Z Y, Zhang Z G and Zhao J Y 2014 Phys. Rev. A 89 041402 | [19] | Bernard J E, Madej A A, Siemsen K J, Marmet L, Latrasse C, Touahri D, Poulin M, Allard M and Tetu M 2000 Opt. Commun. 173 357 | [20] | Farley J W and Wing W H 1981 Phys. Rev. A 23 2397 | [21] | Nez F, Biraben F, Felder R and Millerioux Y 1993 Opt. Commun. 102 432 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|