CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator |
Tian-Yi Han1,2, Guang-Wei Deng1,2, Da Wei1,2, Guo-Ping Guo1,2** |
1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
Tian-Yi Han, Guang-Wei Deng, Da Wei et al 2016 Chin. Phys. Lett. 33 047301 |
|
|
Abstract Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demonstrate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and $1.1\times 10^{-4}\,{\rm e}/\sqrt{\rm Hz}$ charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.
|
|
Received: 28 October 2015
Published: 29 April 2016
|
|
|
|
|
|
[1] | Reilly D J, Marcus C M, Hanson M P and Gossard A C 2007 Appl. Phys. Lett. 91 162101 | [2] | Mourokh L G, Puller V I, Smirnov A Y and Bird J P 2005 Appl. Phys. Lett. 87 192501 | [3] | Schoelkopf R J 1998 Science 280 1238 | [4] | Aassime A, Gunnarsson D, Bladh K, Delsing P and Schoelkopf R 2001 Appl. Phys. Lett. 79 4031 | [5] | Chen Y et al 2012 Appl. Phys. Lett. 101 182601 | [6] | Jerger M, Poletto S, Macha P et al 2012 Appl. Phys. Lett. 101 042604 | [7] | Delbecq M R et al 2011 Phys. Rev. Lett. 107 256804 | [8] | Frey T, Leek P J, Beck M, Blais A, Ihn T, Ensslin K and Wallraff A 2012 Phys. Rev. Lett. 108 046807 | [9] | Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A and Petta J R 2012 Nature 490 380 | [10] | Deng G W et al 2015 Phys. Rev. Lett. 115 133601 | [11] | Hornibrook J M, Colless J I, Mahoney A C, Croot X G, Blanvillain S, Lu H, Gossard A C and Reilly D J 2014 Appl. Phys. Lett. 104 103108 | [12] | Jerger M, Poletto S, Macha P, Hübner U, Lukashenko A, Il'ichev E and Ustinov A V 2011 Europhys. Lett. 96 40012 | [13] | Deng G W et al 2015 Nano Lett. 15 6620 | [14] | Zhang M L et al 2014 Appl. Phys. Lett. 104 083511 | [15] | Zhang M L et al 2014 Appl. Phys. Lett. 105 073510 | [16] | Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113 | [17] | Müller T, Choi T, Hellmüller S, Ensslin K, Ihn T and Sch?n S 2013 Rev. Sci. Instrum. 84 083902 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|