Chin. Phys. Lett.  2016, Vol. 33 Issue (04): 047301    DOI: 10.1088/0256-307X/33/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator
Tian-Yi Han1,2, Guang-Wei Deng1,2, Da Wei1,2, Guo-Ping Guo1,2**
1Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Tian-Yi Han, Guang-Wei Deng, Da Wei et al  2016 Chin. Phys. Lett. 33 047301
Download: PDF(958KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demonstrate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and $1.1\times 10^{-4}\,{\rm e}/\sqrt{\rm Hz}$ charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.
Received: 28 October 2015      Published: 29 April 2016
PACS:  73.21.La (Quantum dots)  
  72.80.Vp (Electronic transport in graphene)  
  85.35.Gv (Single electron devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/4/047301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I04/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tian-Yi Han
Guang-Wei Deng
Da Wei
Guo-Ping Guo
[1]Reilly D J, Marcus C M, Hanson M P and Gossard A C 2007 Appl. Phys. Lett. 91 162101
[2]Mourokh L G, Puller V I, Smirnov A Y and Bird J P 2005 Appl. Phys. Lett. 87 192501
[3]Schoelkopf R J 1998 Science 280 1238
[4]Aassime A, Gunnarsson D, Bladh K, Delsing P and Schoelkopf R 2001 Appl. Phys. Lett. 79 4031
[5]Chen Y et al 2012 Appl. Phys. Lett. 101 182601
[6]Jerger M, Poletto S, Macha P et al 2012 Appl. Phys. Lett. 101 042604
[7]Delbecq M R et al 2011 Phys. Rev. Lett. 107 256804
[8]Frey T, Leek P J, Beck M, Blais A, Ihn T, Ensslin K and Wallraff A 2012 Phys. Rev. Lett. 108 046807
[9]Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A and Petta J R 2012 Nature 490 380
[10]Deng G W et al 2015 Phys. Rev. Lett. 115 133601
[11]Hornibrook J M, Colless J I, Mahoney A C, Croot X G, Blanvillain S, Lu H, Gossard A C and Reilly D J 2014 Appl. Phys. Lett. 104 103108
[12]Jerger M, Poletto S, Macha P, Hübner U, Lukashenko A, Il'ichev E and Ustinov A V 2011 Europhys. Lett. 96 40012
[13]Deng G W et al 2015 Nano Lett. 15 6620
[14]Zhang M L et al 2014 Appl. Phys. Lett. 104 083511
[15]Zhang M L et al 2014 Appl. Phys. Lett. 105 073510
[16]Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
[17]Müller T, Choi T, Hellmüller S, Ensslin K, Ihn T and Sch?n S 2013 Rev. Sci. Instrum. 84 083902
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 047301
[2] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 047301
[3] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 047301
[4] Hui-Li Yin, Su-Ling Zhao, Zheng Xu, Li-Zhi Sun. Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance[J]. Chin. Phys. Lett., 2016, 33(03): 047301
[5] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 047301
[6] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 047301
[7] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 047301
[8] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 047301
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 047301
[10] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 047301
[11] A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo. Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors[J]. Chin. Phys. Lett., 2013, 30(10): 047301
[12] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 047301
[13] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 047301
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 047301
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 047301
Viewed
Full text


Abstract