Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 036101    DOI: 10.1088/0256-307X/33/3/036101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Bubble Generation in Germanate Glass Induced by Femtosecond Laser
Jue-Chen Wang1, Qiang-Bing Guo1, Xiao-Feng Liu1, Ye Dai3, Zhi-Yu Wang1, Jian-Rong Qiu1,2**
1School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640
3Department of Physics, Shanghai University, Shanghai 200444
Cite this article:   
Jue-Chen Wang, Qiang-Bing Guo, Xiao-Feng Liu et al  2016 Chin. Phys. Lett. 33 036101
Download: PDF(2332KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the observation of bubble generation and migration in a germanate glass during irradiation by a femtosecond laser of high repetition rate. Bubbles are formed around the focal area of the laser beam, and their movement indicates the presence of thermal gravity convection in the glass melt, which is beyond the existing theoretical model about temperature field of focal area. Inside the bubbles, oxygen molecules are observed by the confocal Raman micro-spectroscopy. The generation of molecular oxygen and bubbles is explained in terms of the spatial separation of Ge and O ions and micro-explosion inside the glass melt.
Received: 09 November 2015      Published: 31 March 2016
PACS:  61.43.Fs (Glasses)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
  52.38.Mf (Laser ablation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  78.30.-j (Infrared and Raman spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/036101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/036101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jue-Chen Wang
Qiang-Bing Guo
Xiao-Feng Liu
Ye Dai
Zhi-Yu Wang
Jian-Rong Qiu
[1]Juodkazis S, Nishimura K, Tanaka S, Misawa H, Gamaly E G, Luther-Davies B, Hallo L, Nicolai P and Tikhonchuk V T 2006 Phys. Rev. Lett. 96 166101
[2]Gamaly E G, Juodkazis S, Nishimura K, Misawa H and Luther-Davies B 2006 Phys. Rev. B 73 214101
[3]Bressel L, de Ligny D, Gamaly E G, Rode A V and Juodkazis S 2011 Opt. Mater. Express 1 1150
[4]Vailionis A, Gamaly E G, Mizeikis V, Yang W, Rode A V and Juodkazis S 2011 Nat. Commun. 2 445
[5]Itoh K, Watanabe W, Nolte S and Schaffer C B 2006 MRS Bull. 31 620
[6]Miura K, Qiu J R, Fujiwara S, Sakaguchi S and Hirao K 2002 Appl. Phys. Lett. 80 2263
[7]Schaffer C B, Brodeur A, Garcia J F and Mazur E 2001 Opt. Lett. 26 93
[8]Eaton S M, Merchant C A, Iyer R, Zilkie A J, Helmy A S, Aitchison J S, Herman P R, Kraemer D, Miller R, Hnatovsky C and Taylor R S 2008 Appl. Phys. Lett. 92 081105
[9]Liao Y, Song J, Li E, Luo Y, Shen Y, Chen D, Cheng Y, Xu Z, Sugioka K and Midorikawa K 2012 Lab. Chip. 12 746
[10]Dai Y, Zhu B, Qiu J R, Ma H L, Lu B, Cao S X and Yu B K 2007 Appl. Phys. Lett. 90 181109
[11]Watanabe T, Shiozawa M, Tatsu E, Kimura S, Umeda M, Mine T, Shimotsuma Y, Sakakura M, Nakabayashi M, Miura K and Watanabe K 2013 Jpn. J. Appl. Phys. 52 09LA02
[12]Sankin G N, Simmons W N, Zhu S L and Zhong P 2005 Phys. Rev. Lett. 95 034501
[13]Quinto-Su P A, Huang X H, Gonzalez-Avila S R, Wu T and Ohl C D 2010 Phys. Rev. Lett. 104 014501
[14]Uebbing J J, Hengstler S, Schroeder D, Venkatesh S and Haven R 2006 J. Microelectromech. Syst. 15 1528
[15]Glezer E N and Mazur E 1997 Appl. Phys. Lett. 71 882
[16]Bellouard Y and Hongler M O 2011 Opt. Express 19 6807
[17]Graf R, Fernandez A, Dubov M, Brueckner H J, Chichkov B N and Apolonski A 2007 Appl. Phys. B 87 21
[18]Thomas J, Bernard R, Alti K, Dharmadhikari A K, Dharmadhikari J A, Bhatnagar A, Santhosh C and Mathur D 2013 Opt. Commun. 304 29
[19]Luo F F, Lin G, Sun H Y, Zhang G, Liu L, Chen D P, Chen Q X, Zhao Q Z, Qiu J R and Xu Z Z 2011 Opt. Commun. 284 4592
[20]Ye J Y, Chang G, Norris T B, Tse C, Zohdy M J, Hollman K W, O'D M, Baker Jr J R et al 2004 Opt. Lett. 29 2136
[21]Mermillod-Blondin A, Burakov I M, Meshcheryakov Y P, Bulgakova N M, Audouard E, Rosenfeld A, Husakou A, Hertel I V and Stoian R 2008 Phys. Rev. B 77 104205
[22]Shimizu M, Sakakura M, Ohnishi M, Shimotsuma Y, Nakaya T, Miura K and Hirao K 2010 J. Appl. Phys. 108 073533
[23]Liu Y, Shimizu M, Wang X, Zhu B, Sakakura M, Shimotsuma Y, Qiu J R, Miura K and Hirao K 2009 Chem. Phys. Lett. 477 122
[24]Liu Y, Zhu B, Dai Y, Qiao X S, Ye S, Teng Y, Guo Q T, Ma H L, Fan X P and Qiu J R 2009 Opt. Lett. 34 3433
[25]Tu Z F, Teng Y, Zhou J J, Zhou S F, Zeng H P and Qiu J R 2013 J. Raman Spectrosc. 44 307
[26]Sun M Y, Eppelt U, Schulz W G and Zhu J Q 2013 Opt. Mater. Express 3 1716
[27]Yakovlenko S I 2006 International Conference on Lasers, Applications, and Technologies 2005: Laser-Assisted Micro- and Nano-technologies 6161 M1610
[28]Yakovlenko S I 2004 Quantum Electron. 34 765
[29]Torok P, Varga P, Laczik Z and Booker G R 1995 J. Opt. Soc. Am. A 12 325
[30]Dai Y, Yu G J, Wu G R, Liang M H, Yan X N and Ma G H 2012 Chin. Phys. B 21 025201
[31]Wang X, Sakakura M, Liu Y, Qiu J, Shimotsuma Y, Hirao K and Miura K 2011 Chem. Phys. Lett. 511 266
[32]Henderson G S and Fleet M E 1991 J. Non-Cryst. Solids 134 259
Related articles from Frontiers Journals
[1] Ye Tian, Xiaodong Yuan , Dongxia Hu , Wanguo Zheng , and Wei Han . Molecular Dynamics Simulations of the Interface between Porous and Fused Silica[J]. Chin. Phys. Lett., 2020, 37(10): 036101
[2] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 036101
[3] FANG Ming-Lei, XU Feng, WEI Wen-Hou, YANG Zhi-Yong. Structural and Physical Properties of AsxSe100?x Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 036101
[4] WU Chen, HUANG Yong-Jiang, SHEN Jun. Correlation between the Local Atomic Structure of Melts and Glass Forming Ability in Zr-Cu-Ni-Al Alloys[J]. Chin. Phys. Lett., 2013, 30(10): 036101
[5] LIU Chun-Xiao, , LIU Tao, LIU Xiu-Hong, WEI Wei**, PENG Bo** . Helium-Implanted Optical Planar Waveguides in Nd3+-Doped Phosphate Glass[J]. Chin. Phys. Lett., 2011, 28(11): 036101
[6] LIU Bin, WANG Jing-Yang, ZHOU Yan-Chun, LI Fang-Zhi,. Temperature Dependence of Elastic Properties for Amorphous SiO2 by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2008, 25(8): 036101
[7] CHU Sai-Sai, WANG Shu-Feng, TAO Hai-Zheng, WANG Zhen-Wei, YANG Hong, LIN Chang-Gui, GONG Qi-Huang, ZHAO Xiu-Jian. Large and Ultrafast Third-Order Nonlinear Optical Properties of Ge-S Based Chalcogenide Glasses[J]. Chin. Phys. Lett., 2007, 24(3): 036101
[8] N. Mehta, D. Kumar, A. Kumar. Comparative Analysis of Photo-Crystallization in a-Se95Te5 and a-Se95In5 Alloys[J]. Chin. Phys. Lett., 2006, 23(11): 036101
[9] WANG Xun-Si, NIE Qiu-Hua, LIU Li-Ren, XU Tie-Feng, SHEN Xiang, DAI Shi-Xun, ZHANG Xiang-Hua. Improved Fluorescence from Tm3+/Er3+/Ce3+ Triply Doped Bismuth-Silicate Glasses for S+C-bands Amplifiers[J]. Chin. Phys. Lett., 2006, 23(9): 036101
[10] ZHAO Dong-Hui, XIA Fang, NIE Jia-Xiang, CHEN Guo-Rong, ZHANG Xiang-Hua, MA Hong-Li, ADAM Jean-Luc. Gadolinium-Induced Multi-Effect on Properties of IR Transmitting Chalcogenide Glasses[J]. Chin. Phys. Lett., 2004, 21(3): 036101
[11] ZHANG Li-Li, ZHANG Jian-Hua, ZHOU Lin-Xiang. Dynamical Transition of Myoglobin and Cu/Zn Superoxide Dismutase Revealed by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2002, 19(12): 036101
[12] LI Zheng-cao, LIU Bai-xin. Experimental and Theoretical Studies on Composition Limits of Metallic Glass Formation in the Ni-Mo System[J]. Chin. Phys. Lett., 1999, 16(9): 036101
[13] WANG De-liang, U. Geyer, S. Schneider. Crystallization of Ternary Amorphous Ni-Y-AI Films Observed by Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 1998, 15(12): 036101
[14] ZHOU Lin-xiang, J.R. Hardy, XU Xin. Molecular Dynamics Simulation of Binary Fluorozirconate Glass ZrF4.BaF2[J]. Chin. Phys. Lett., 1998, 15(5): 036101
Viewed
Full text


Abstract