CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
First-Principles Study of Properties of Strained PbTiO$_{3}$/KTaO$_{3}$ Superlattice |
Zhen-Ye Zhu**, Si-Qi Wang, Yan-Ming Fu |
Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055
|
|
Cite this article: |
Zhen-Ye Zhu, Si-Qi Wang, Yan-Ming Fu 2016 Chin. Phys. Lett. 33 026302 |
|
|
Abstract The impacts of strain and polar discontinuities on the performance of superlattices have attracted widespread attention. Using first-principles calculation, we study the polarization and piezoelectricity of PbTiO$_{3}$/KTaO$_{3}$ (PTO/KTO) superlattices with strain and polar discontinuities. The strain caused by lattice mismatch between the superlattice and the substrate induces lattice distortion, the displacement of each atom and dynamical charge transfer between the Ti atom or Ta atom and the O atoms in the PTO/KTO superlattice. With more compressive or less tensile strain, the polarization value increases linearly, piezoelectric tensor $e_{31}$ ($e_{32}$) increases while $e_{33}$ and $e_{25}$ ($e_{16}$) increase negatively. Polarity discontinuity caused by the interfacial charge will produce large irreversible polarization. Proved by ${\it \Gamma}$-point phonons of PTO/KTO superlattices of different strain values, the polar discontinuity and the piezoelectric properties are just weakly dependent on temperature as found in PTO/KTO superlattices.
|
|
Received: 01 September 2015
Published: 26 February 2016
|
|
PACS: |
63.20.dk
|
(First-principles theory)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
77.65.-j
|
(Piezoelectricity and electromechanical effects)
|
|
|
|
|
[1] Bungaro C and Rabe K M 2004 Phys. Rev. B 69 184101 [2] Duan Y F, Qin L X, Tang G et al 2010 Phys. Lett. A 374 2075 [3] Duan Y F, Tang G, Chen C Q et al 2012 Phys. Rev. B 85 054108 [4] Hong L, Li Y L, Wu P P et al 2013 J. Appl. Phys. 114 144103 [5] Lee H N, Christen H M and Chisholm M F 2005 Nature 434 792 [6] Dawber M, Lichtensteiger C, Cantoni M et al 2005 Phys. Rev. Lett. 95 177601 [7] Zhu Z Y, Wang B, Wang H et al 2007 Chin. Phys. 16 6 [8] Aguado-Puente P and Junquera J 2012 Phys. Rev. B 85 184105 [9] Lisenkov S and Bellaiche L 2007 Phys. Rev. B 76 020102 [10] Neaton J B and Rabe K M 2003 Appl. Phys. Lett. 82 1586 [11] Pentcheva R and Pickett W E 2010 J. Phys.: Condens. Matter 22 043001 [12] Wu T B and Hung C J 2005 Appl. Phys. Lett. 86 112905 [13] Hung C J, Chueh Y L, Wu T B et al 2005 J. Appl. Phys. 97 034105 [14] Das H, Waghmare U V and Saha-Dasgupta T 2011 Appl. Phys. 109 066107 [15] Das H, Spaldin N A, Waghmare U V et al 2010 Phys. Rev. B 81 235112 [16] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083 [17] Lee H N, Christen H M, Chisholm M F et al 2005 Nature 433 395 [18] Cooper V R, Johnston K and Rabe K M 2007 Phys. Rev. B 76 020103 [19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [20] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [21] Bl?chl P E 1990 Phys. Rev. B 41 5414 [22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [23] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [26] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651 [27] Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618 [28] Kuo C P, Vong S K, Cohen R M et al 1985 J. Appl. Phys. 57 5428 [29] Cooper V R and Rabe K M 2009 Phys. Rev. B 79 180101 [30] Wu Z G and Krakauer H 2003 Phys. Rev. B 68 014112 [31] Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|