Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 026201    DOI: 10.1088/0256-307X/33/2/026201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain
Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang**, Xiao-Ping Wu
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
Cite this article:   
Shi-Hua Fu, Yu-Long Cai, Su-Li Yang et al  2016 Chin. Phys. Lett. 33 026201
Download: PDF(570KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mechanism of the critical strain of serrated yielding is studied via tension tests at various strain rates. Before the critical strain, it is deduced that dislocations are not pinned at high strain rates, and dislocations at low strain rates are pinned but cannot escape. The critical strain depends on the first pinning process at high strain rates and on the first unpinning process at low strain rates. The calculated results based on the two criteria are in good consistency with the experiment.
Received: 15 September 2015      Published: 26 February 2016
PACS:  62.20.F- (Deformation and plasticity)  
  81.05.Bx (Metals, semimetals, and alloys)  
  81.40.Cd (Solid solution hardening, precipitation hardening, and dispersion hardening; aging)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/026201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/026201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shi-Hua Fu
Yu-Long Cai
Su-Li Yang
Qing-Chuan Zhang
Xiao-Ping Wu
[1] Zhao S T, Meng C L, Mao F X, Hu W P and Gottstein G 2014 Acta Mater. 76 54
[2] Fu S H, Gao Y, Cai Y L, Cheng T, Zhang Q C and Wu X P 2015 Measurement 72 61
[3] Choudhary B K 2013 Mater. Sci. Eng. A 564 303
[4] Sun L, Zhang Q C and Cao P T 2009 Chin. Phys. B 18 3500
[5] McCormick P G 1988 Acta Metall. 36 3061
[6] Picu R C 2004 Acta Mater. 52 3447
[7] Curtin W A, Olmsted D L and Hector L G 2006 Nat. Mater. 5 875
[8] Kubin L P and Estrin Y 1990 Acta Metall. Mater. 38 697
[9] McCormick P G 1972 Acta Metall. 20 351
[10] H?hner P 1997 Acta Mater. 45 3695
[11] Cai M C, Niu L S, Yu T, Shi H J and Ma X F 2010 Mater. Sci. Eng. A 527 5175
[12] Mazière M and Dierke H 2012 Comput. Mater. Sci. 52 68
[13] Lee S, Kim J, Lee S J and De Cooman B C 2011 Scr. Mater. 65 528
[14] Cui C Y, Gu Y F, Yuan Y and Harada H 2011 Scr. Mater. 64 502
[15] Fu S H, Cheng T, Zhang Q C, Hu Q and Cao P T 2012 Acta Mater. 60 6650
[16] Springer F, Nortmann A and Schwink C 1998 Phys. Status Solidi A 170 63
[17] Flor H and Neuh?user H 1980 Acta Metall. 28 939
[18] Hu Q, Zhang Q C, Cao P T and Fu S H 2012 Acta Mater. 60 1647
Related articles from Frontiers Journals
[1] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 026201
[2] Dong-Mei Li, Lan-Sheng Chen, Peng Yu, Ding Ding, and Lei Xia. A New Cu-Based Metallic Glass Composite with Excellent Mechanical Properties[J]. Chin. Phys. Lett., 2020, 37(8): 026201
[3] Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng. Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium[J]. Chin. Phys. Lett., 2018, 35(11): 026201
[4] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 026201
[5] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 026201
[6] Jian-Qiao Hu, Zhan-Li Liu, Yi-Nan Cui, Feng-Xian Liu, Zhuo Zhuang. A New View of Incipient Plastic Instability during Nanoindentation[J]. Chin. Phys. Lett., 2017, 34(4): 026201
[7] Wei-Dong Cheng, Chuan-Hui Ren, Xiao-Hua Gu, Zhao-Jun Wu, Xue-Qing Xing, Guang Mo, Zhong-Jun Chen, Zhong-Hua Wu. Microstructural Changes of Graphene/PLA/PBC Nanofibers by Electrospinning during Tensile Tests[J]. Chin. Phys. Lett., 2017, 34(3): 026201
[8] Xu Zhang, Xiang-Cheng Zhang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: Avalanche Size Predicted by a Continuum Crystal Plasticity Model[J]. Chin. Phys. Lett., 2016, 33(10): 026201
[9] Xu Zhang, Zhi Wang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: A Theoretical Study of the Relation between the Avalanche Size and Duration[J]. Chin. Phys. Lett., 2016, 33(09): 026201
[10] DONG Yuan-Xiang, ZHANG Guo-Hua, SUN Qi-Cheng, ZHAO Xue-Dan, NIU Xiao-Na. Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear[J]. Chin. Phys. Lett., 2015, 32(12): 026201
[11] ZHANG Xu, SHANG Fu-Lin. The Burst Time Duration in Micropillar Deformation[J]. Chin. Phys. Lett., 2014, 31(2): 026201
[12] WANG Yin, ZHOU Jin-Xiong, WU Xiao-Hong, LI Bo, ZHANG Ling. Energy Diagrams of Dielectric Elastomer Generators under Different Types of Deformation[J]. Chin. Phys. Lett., 2013, 30(6): 026201
[13] ZHOU Kai, LI Hui, WANG Zhu . Plastic Deformation of Nanocrystalline Zinc Investigated by Positron Annihilation Lifetime Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(5): 026201
[14] CUI Yi-Nan, LIU Zhan-Li, ZHUANG Zhuo. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales[J]. Chin. Phys. Lett., 2013, 30(4): 026201
[15] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 026201
Viewed
Full text


Abstract