Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 026102    DOI: 10.1088/0256-307X/33/2/026102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Atomistic Simulations of the Effect of Helium on the Dissociation of Screw Dislocations in Nickel
Jian Xu1,2, Cheng-Bin Wang1,3, Wei Zhang1,3, Cui-Lan Ren1,3, Heng-Feng Gong1, Ping Huai1**
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
3Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
Jian Xu, Cheng-Bin Wang, Wei Zhang et al  2016 Chin. Phys. Lett. 33 026102
Download: PDF(939KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The interactions of He with dissociated screw dislocations in face-centered-cubic (fcc) Ni are investigated by using molecular dynamics simulations based on an embedded-atom method model. The binding and formation energies of interstitial He in and near Shockley partial cores are calculated. The results show that interstitial He atoms at tetrahedral sites in the perfect fcc lattice and atoms occupying sites one plane above or below one of the two Shockley partial cores exhibit the strongest binding energy. The attractive or repulsive nature of the interaction between interstitial He and the screw dislocation depends on the relative position of He to these strong binding sites. In addition, the effect of He on the dissociation of screw dislocations are investigated. It is found that He atoms homogeneously distributed in the glide plane can reduce the stacking fault width.
Received: 30 September 2015      Published: 26 February 2016
PACS:  61.72.Yx (Interaction between different crystal defects; gettering effect)  
  61.72.Bb (Theories and models of crystal defects)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
  02.70.-c (Computational techniques; simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/026102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/026102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Xu
Cheng-Bin Wang
Wei Zhang
Cui-Lan Ren
Heng-Feng Gong
Ping Huai
[1] Yvon P and Carré F 2009 J. Nucl. Mater. 385 217
[2] Tancret F et al 2003 Mater. Sci. Technol. 19 296
[3] Braski D N et al 1979 J. Nucl. Mater. 83 265
[4] Ullmaier H 1984 Nucl. Fusion 24 1039
[5] Wang H Y et al 2008 Acta Phys. Sin. 57 3703
[6] Liang L et al 2015 Acta Phys. Sin. 64 046103 (in Chinese)
[7] Rodney D 2004 Acta Mater. 52 607
[8] Soleymani M et al 2014 Comput. Mater. Sci. 84 83
[9] McReynolds A W et al 1955 Phys. Rev. 98 418
[10] Rodney D and Martin G 1999 Phys. Rev. Lett. 82 3272
[11] Xu Q, Yamasaki H et al 2011 Philos. Mag. Lett. 91 724
[12] Xu Q, Yamasaki H et al 2013 Mater. Sci. Eng. A 586 231
[13] Yang L et al 2010 Physica B 405 1754
[14] Heinisch H L et al 2006 J. Nucl. Mater. 351 141
[15] Plimpton S 1995 J. Comput. Phys. 117 1
[16] Sheng H W et al 2011 Phys. Rev. B 83 134118
[17] Aziz R A and Janzen A R 1995 Phys. Rev. Lett. 74 1586
[18] Zhang W et al 2015 J. Nucl. Mater. (accepted)
[19] Brommer P and G?hler F 2007 Modell. Simul. Mater. Sci. Eng. 15 295
[20] Ziegler J F et al 1985 The Stopping and Range of Ions in Matter (New York: Pergamon)
[21] Faken D and Jonsson H 1994 Comput. Mater. Sci. 2 279
[22] Tsuzuki H et al 2007 Comput. Phys. Commun. 177 518
[23] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[24] Cai W http://micro.stanford.edu/MDpp/
[25] Carter C B and Holmes S M 1977 Philos. Mag. 35 1161
[26] Szelestey P et al 2003 Modell. Simul. Mater. Sci. Eng. 11 883
[27] Xiang Y X and Yu W C 2013 Chin. Phys. B 22 027101
[28] Wen M et al 2005 Philos. Mag. 85 1917
[29] Angelo J et al 1995 Modell. Simul. Mater. Sci. Eng. 3 289
[30] Rao S I et al 2010 Acta Mater. 58 5547
[31] Hepburn D J et al 2013 Phys. Rev. B 88 024115
[32] Zu X T et al 2009 Phys. Rev. B 80 054104
[33] Aubry S and Hughes D A 2006 Phys. Rev. B 73 224116
[34] Wolf D et al 2005 Acta Mater. 53 1
[35] Hirth J P and Lothe J 1982 Theory of Dislocations (New York: Wiley)
[36] Vitek V 1968 Philos. Mag. 18 773
[37] Zimmerman J A et al 2000 Modell. Simul. Mater. Sci. Eng. 8 103
Related articles from Frontiers Journals
[1] WU Shan-Shan, WANG Lei**, YANG De-Ren . Improving the Quality of the Deteriorated Regions of Multicrystalline Silicon Ingots during General Solar Cell Processes[J]. Chin. Phys. Lett., 2011, 28(4): 026102
[2] LIN Li-Xia, CHEN Jia-He, WU Peng, ZENG Yu-Heng, MA Xiang-Yang, YANG De-Ren** . Denuded Zone Formation in Germanium Codoped Heavily Phosphorus-Doped Czochralski Silicon[J]. Chin. Phys. Lett., 2011, 28(3): 026102
[3] ZHU Xin, YANG De-Ren, LI Ming, CHEN Tao, WANG Lei, QUE Duan-Lin. Minority Carrier Lifetime in As-Grown Germanium Doped Czochralski Silicon[J]. Chin. Phys. Lett., 2008, 25(2): 026102
[4] LI Ming, MA Xiang-Yang, YANG De-Ren. Kinetics of Nitrogen Indiffusion in Czochralski Silicon Annealed in Nitrogen Ambient[J]. Chin. Phys. Lett., 2008, 25(2): 026102
[5] JIANG Hui-Feng, ZHANG Qing-Chuan, CHEN Xue-Dong, FAN Zhi-Chao, CHEN Zhong-Jia, WU Xiao-Ping. Numerical Simulation of the Elastic Shrinkage Induced by Portevin--Le Chatelier Effect[J]. Chin. Phys. Lett., 2007, 24(5): 026102
[6] F. Ayad, M. Remram. Modelling of Gettering by Mechanical Damage of Metallic Impurities in Silicon[J]. Chin. Phys. Lett., 2006, 23(11): 026102
[7] CUI Can, YANG De-Ren, MA Xiang-Yang, FU Li-Ming, FAN Rui-Xin, QUE Duan-Lin. Oxygen Precipitation within Denuded Zone Founded by Rapid Thermal Processing in Czochralski Silicon Wafers[J]. Chin. Phys. Lett., 2005, 22(9): 026102
Viewed
Full text


Abstract