CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Effect of Quench Treatment on Fe/Mo Order and Magnetic Properties of Double Perovskite Sr$_{2}$FeMoO$_{6}$ |
Yan-Chun Hu1,2**, Ya-Wen Cui1,2, Xian-Wei Wang1,2, Yi-Pu Liu1,2 |
1College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 2Henan Province Key Laboratory of Photovoltaic Materials, Xinxiang 453007
|
|
Cite this article: |
Yan-Chun Hu, Ya-Wen Cui, Xian-Wei Wang et al 2016 Chin. Phys. Lett. 33 026101 |
|
|
Abstract A quench-treatment technique is used to prepare a high-quality polycrystalline sample of double perovskite Sr$_{2}$FeMoO$_{6}$ (SFMO). X-ray powder diffraction analysis reveals that the sample has a single phase and exhibits I4/m symmetry. The cation order $\eta$ of the sample increases to 98.9(2)% from 94.2(3)%, which is prepared by the traditional sol-gel method. The initial magnetization isotherm of the sample is detected at 300 K. Unit-cell magnetization for the current sample is 1.332 $\mu_{\rm B}$ at 300 K, and the one for the traditional sol-gel method sample is 0.946 $\mu_{\rm B}$. Unit-cell magnetization is enhanced to 40.80% by the quench-treatment technique. Quench treatment is an effective method of enhancing the Fe/Mo order and magnetic properties of double perovskite SFMO.
|
|
Received: 19 August 2015
Published: 26 February 2016
|
|
PACS: |
61.05.cp
|
(X-ray diffraction)
|
|
61.50.-f
|
(Structure of bulk crystals)
|
|
85.70.Li
|
(Other magnetic recording and storage devices (including tapes, disks, And drums))
|
|
85.80.Jm
|
(Magnetoelectric devices)
|
|
|
|
|
[1] Guo S D 2014 Chin. Phys. Lett. 31 017101 [2] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677 [3] Kumar N, Misra P, Kotnala R K, Gaur Rawat R A, Choudhary R J and Katiyar R S 2014 Mater. Lett. 118 200 [4] Huo G, Ren X, Qian L, Zhang N, Liu S and Xu Y 2013 J. Magn. Magn. Mater. 343 119 [5] Martinez-Coronado R, Alonso J A and Fernandez-Diaz M T 2014 J. Alloys Compd. 607 280 [6] Cernean M, Vasiliu F, Bartha C, Plapcianu C and Mercioniu I 2014 Ceram. Int. 40 11601 [7] Wu H, Ma Y, Qian Y, Kan E, Lu R, Liu Y, Tan W, Xiao C and Deng K 2014 Solid State Commun. 177 57 [8] Lu R, Wu H, Qian Y, Kan E, Liu Y, Tan W, Xiao C and Deng K 2014 Solid State Commun. 191 70 [9] Zheng K and ?wierczek K 2014 J. Eur. Ceram. Soc. 34 4273 [10] Zhang Q, Xu Z F, Wang L F, Gao S H and Yuan S J 2015 J. Alloys Compd. 649 1151 [11] Park B G, Jeong Y H and Park J H 2009 Phys. Rev. B 79 035105 [12] Wang J, Xu X, Ji W, Zhang S, Zhou J, Gu Z, Chen Y, Yuan G, Yao S and Chen Y 2013 CrystEngCommn. 15 4601 [13] Hu Y C, Han H X, Hu H J, Zhang K L, Wang H Y, Jiang Y J, Ma H and Lu Q F 2012 J. Alloys Compd. 526 1 [14] Hu Y C, Wang H Y, Wang X W, Song G L, Su J, Cui Y W, Ma H and Chang F G 2015 J. Alloys Compd. 622 819 [15] Yuki T, Goro M and Dierk R 2015 Acta Mater. 86 137 [16] Kamran A, Amin A and Sirus J 2014 Mater. Des. 54 154 [17] Feng D Y, Liu Z W, Zheng Z G, Zeng D C and Zhang G Q 2013 J. Magn. Magn. Mater. 347 18 [18] Huang C H, Ma L, Chen Z Q, Wang Z, Wang X W and Zhang H Y 2007 Chin. Phys. Lett. 24 546 [19] Huang X F, Liu W L, Huang Y Y, Chen H and Huang W G 2015 J. Mater. Process. Technol. 222 181 [20] Toby B H 2001 J. Appl. Crystallogr. 34 210 [21] Mu?oz-García A B, Michele P and Emily A C 2011 Chem. Mater. 23 4525 [22] Hou M Y, Sun W, Li P F, Feng J, Yang G Q, Qiao J S, Wang Z H, Rooney D, Feng J S and Sun K N 2014 J. Power Sources 272 759 [23] Kobayashi K I, Kimura T, Tomioka Y, Sawada H, Terakura K and Tokura Y 1999 Phys. Rev. B 59 11159 [24] Sanyal P 2014 Phys. Rev. B 89 115129 [25] Westerburg W, Reisinger D and Jakob G 2000 Phys. Rev. B 62 R767 [26] Hu Y C, Ge J J, Ji Q, Jiang Z S, Wu X S and Cheng G F 2010 Mater. Chem. Phys. 124 274 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|