Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 015203    DOI: 10.1088/0256-307X/33/1/015203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Bias Effects on the Reynolds Stress Using the Multi-Purpose Probe in IR-T1 Tokamak
M. Lafouti1**, M. Ghoranneviss2
1Department of Physics, Damavand Branch, Islamic Azad University, Damavand, Iran
2Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Cite this article:   
M. Lafouti, M. Ghoranneviss 2016 Chin. Phys. Lett. 33 015203
Download: PDF(826KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of the positive bias on Reynolds stress (RS) and its effect on the radial turbulent transport at the edge plasma ($r/a=0.9$) and scrape-off layer (SOL) region of plasma in tokamak are investigated. The radial and poloidal electric fields ($E_{\rm r}$, $E_{\rm p}$) and ion saturation current ($I_{\rm s}$) are measured by multi-purpose probe (MPP). This probe is fabricated and constructed for the first time in the IR-T1 tokamak. The most advantage of this probe is that the variations of $E_{\rm r}$ and $E_{\rm p}$ can be measured in different radii at the single shot. Thus the information of different radii can be compared with high precision. The bias voltage is fixed at $V_{\rm bias}=200$ V and it has been applied with the limiter bias that is fixed in $r/a=0.9$. Moreover, the phase difference between radial and poloidal electric fields, and temporal evolution of the RS spectrum detected by MPP are calculated. RS magnitude on the edge ($r/a=0.9$) is more than its value in the SOL ($r/a=1.02$). With the applied bias 200 V, RS and the magnitude of the phase difference between $E_{\rm r}$ and $E_{\rm p} $ are increased, while the radial turbulent transport is decreased simultaneously. Thus it can be concluded that RS affects radial turbulence. Temporal evolution of the RS spectrum shows that the frequency of RS is increased and reaches its highest value at $r/a$=0.9 in the presence of bias.

Received: 04 August 2015      Published: 29 January 2016
PACS:  52.25.Fi (Transport properties)  
  52.25.Gj (Fluctuation and chaos phenomena)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/1/015203       OR      https://cpl.iphy.ac.cn/Y2016/V33/I01/015203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Lafouti
M. Ghoranneviss

[1] Diamond P H and Kim Y B 1991 Phys. Fluids B 3 1626
[2] Hidalgo C et al 1999 Phys. Rev. Lett. 83 2203
[3] Korsholm S B et al 2001 Plasma Phys. Control. Fusion 43 1377
[4] Burrell K H 1997 Phys. Plasmas 4 1499
[5] Schrittwieser R et al 2002 Plasma Phys. Control. Fusion 44 567
[6] Chiuen T, Terry P W and Diamond P H 1986 Phys. Fluids B 29 231
[7] Burrell K H et al 1994 Phys. Plasmas 1 1536
[8] van Oost G et al 2003 Plasma Phys. Control. Fusion 45 621
[9] Huld T et al 1991 Phys. Fluids B 3 1609
[10] Bleuel J et al 2002 New J. Phys. 4 38
[11] Grulke O et al 2002 New J. Phys. 4 67
[12] Diamond P H et al 1991 Phys. Fluids B 3 1626
[13] Carreras B A et al 1994 Phys. Plasmas 1 4014
[14] Hidalgo C et al 2005 Proceedings of the International Conference 'Nuclear Energy for New Europe 2005 42 A153
[15] Xu Y H et al 2000 Phys. Rev. Lett. 84 3867
[16] Hidalgo C et al 2002 New J. Phys. 4 51.1
[17] Craddock G G et al 1991 Phys. Rev. Lett. 67 1535
[18] Biglari H et al 1992 AIP Conf. Proc. 244 376
[19] Craddock G G et al 1994 Phys. Plasmas 1 1944
[20] Wagner F et al 1982 Phys. Rev. Lett. 49 1408
[21] Burrell K 1997 Phys. Plasmas 4 1499
[22] Terry P W 2000 Rev. Mod. Phys. 72 109
[23] Silva C et al 2004 Nucl. Fusion 44 799
[24] Terry P W 2000 Reviews of Modern Phys. 72 109
[25] Hidalgo C et al 2000 Plasma Phys. Control. Fusion 42 A153

Related articles from Frontiers Journals
[1] Zeren Zhang and Jiping Huang. Transformation Plasma Physics[J]. Chin. Phys. Lett., 2022, 39(7): 015203
[2] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 015203
[3] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 015203
[4] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 015203
[5] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 015203
[6] Lafouti M., Ghoranneviss M.. MF-DFA Analysis of Turbulent Transport Measured by a Multipurpose Probe[J]. Chin. Phys. Lett., 2015, 32(10): 015203
[7] PENG Xiao-Dong, QU Hong-Peng, XU Jian-Qiang, HAN Zui-Jiao. Self-Organized Criticality Theory Model of Thermal Sandpile[J]. Chin. Phys. Lett., 2015, 32(09): 015203
[8] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 015203
[9] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 015203
[10] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 015203
[11] SUN Su-Rong, WANG Hai-Xing. Temporal Evolution of Excited Level Populations in a High-Velocity Argon Plasma Flow[J]. Chin. Phys. Lett., 2014, 31(09): 015203
[12] WANG Wei-Zong, RONG Ming-Zhe, YANG Fei, WU Yi. Transport Coefficients of High Temperature SF6 in Local Thermodynamic Equilibrium Using a Phenomenological Approach[J]. Chin. Phys. Lett., 2014, 31(03): 015203
[13] ZHANG Lu, YANG Shu. Modified Hybrid Plasmonic Waveguides as Tunable Optical Tweezers[J]. Chin. Phys. Lett., 2013, 30(3): 015203
[14] CHEN Zhao, SONG Gang, YU Li, CHEN Jian-Jun, XIAO Jing-Hua. Compact Wavelength Demultiplexer Structure Based on Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(10): 015203
[15] HUANG Cheng-Wu, SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En. Effective Opacity for Gold-Doped Foam Plasmas[J]. Chin. Phys. Lett., 2012, 29(9): 015203
Viewed
Full text


Abstract