Chin. Phys. Lett.  2016, Vol. 33 Issue (01): 014204    DOI: 10.1088/0256-307X/33/1/014204
Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots
R. Nasehi1**, S. H. Asadpour2, H. Rahimpour Soleimani2, M. Mahmoudi1
1Department of Physics, University of Zanjan, University Blvd., Zanjan 45371-38791, Iran
2Department of Physics, University of Guilan, Rasht, Iran
Cite this article:   
R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani et al  2016 Chin. Phys. Lett. 33 014204
Download: PDF(872KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

We study the controlling of the Goos–Hänchen (GH) shifts in reflected and transmitted light beams in the triple coupled InGaAs/GaAs quantum dot (QD) nanostructures with electron tunneling and incoherent pumping field. It is shown that the lateral shift can become either large negative or large positive, which can be controlled by the electron tunneling and the rate of incoherent pump field in different incident angles. It is also demonstrated that the properties of the GH shifts are strongly dependent on the probe absorption beam of the intracavity medium due to the switching from superluminal light propagation to subluminal behavior or vice versa. Our suggested system can be considered as a new theoretical method for developing a new nano-optoelectronic sensor.

Received: 16 July 2015      Published: 29 January 2016
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  78.67.Hc (Quantum dots)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
R. Nasehi
S. H. Asadpour
H. Rahimpour Soleimani
M. Mahmoudi

[1] Pichet J 1929 Ann. Phys. 395 433 (in Paris)
[2] Goos F and Hänchen H 1947 Ann. Phys. 436 333
[3] Goos F and Hänchen H 1949 Ann. Phys. 440 251
[4] Artmann K 1799 Ann. Phys. 2 87
[5] Renard R H 1964 J. Opt. Soc. Am. 54 1190
[6] Hu X et al 2005 Opt. Lett. 30 899
[7] Oh G Y, Kim D G and Choi Y W 2009 Opt. Express 17 20714
[8] Berman P R 2002 Phys. Rev. E 66 067603
[9] Lakhtakia A 2003 Electromanetics 23 71
[10] Kong J A et al 2002 Appl. Phys. Lett. 80 2084
[11] Wang L G, Ikram M and Zubairy M S 2008 Phys. Rev. A 77 023811
[12] Schmidt H et al 1999 Laser Phys. 9 797
[13] Wang Z 2011 Ann. Phys. 326 340
[14] Openov L A 1999 Phys. Rev. B 60 8798
[15] Villas-Bôas J M et al 2004 Phys. Rev. B 69 125342
[16] Chow W W, Schneider H C and Phillips M C 2003 Phys. Rev. A 68 053802
[17] Mahmoudi M and Sahrai M 2009 Physica E 41 1772
       Nasehi R and Sahrai M 2012 J. Lumin. 132 2302
[18] Ziauddin, Qamar S and Zubairy M S 2010 Phys. Rev. A 81 023821
       Maboodi P et al 2014 Commun. Theor. Phys. 62 864
[19] Mehmannavaz M R, Nasehi R et al 2014 Superlattices Microstruct. 75 27
[20] Born M and Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press)
[21] Liu N H, Zhu S Y et al 2002 Phys. Rev. E 65 046607
[22] Siddiqui O F, Mojahedi M and Eleftheriades G V 2003 IEEE Trans. Antennas Propag. 51 2619
[23] Yuan C H, Zhu K D and Jiang Y W 2007 J. Apply Phys. 102 023109
[24] Chang-Hasnain C J et al 2003 Proc. IEEE 9 1884

Related articles from Frontiers Journals
[1] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 014204
[2] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 014204
[3] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 014204
[4] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 014204
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 014204
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 014204
[7] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 014204
[8] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 014204
[9] Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang, Jian-Ming Zhao, Suo-Tang Jia. Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions[J]. Chin. Phys. Lett., 2016, 33(12): 014204
[10] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 014204
[11] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 014204
[12] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 014204
[13] WANG Chun-Fang, WANG Feng, YANG Li-Ru. Electromagnetically Induced Self-Imaging in Four-Level Doppler Broadening Medium[J]. Chin. Phys. Lett., 2015, 32(09): 014204
[14] YANG Li-Ru, WANG Chun-Fang, ZHANG Da-Wei. Transverse Optical Properties of the Eu3+:Y2SiO5 Crystal in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(06): 014204
[15] ZHANG Jun, GU Zhen-Jie, QIAN Peng, HAN Zhi-Guang, CHEN Jie-Fei. Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle[J]. Chin. Phys. Lett., 2015, 32(06): 014204
Full text