Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 127503    DOI: 10.1088/0256-307X/32/12/127503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$
DAI Jia1, WANG Peng-Shuai1, SUN Shan-Shan1, PANG Fei1, ZHANG Jin-Shan2, DONG Xiao-Li3, YUE Gen3, JIN Kui3, CONG Jun-Zhuang3, Sun Yang3, YU Wei-Qiang1**
1Department of Physics, Renmin University of China, Beijing 100872
2School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206
3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
DAI Jia, WANG Peng-Shuai, SUN Shan-Shan et al  2015 Chin. Phys. Lett. 32 127503
Download: PDF(805KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report the first nuclear magnetic resonance (NMR) study on single crystals of staircase Kagomé antiferromagnet PbCu3TeO7 (TN1∼36 K). A Curie constant Θ ∼−140 K is obtained by a Curie–Weiss fit to the high-temperature Knight shift of 125Te. The hyperfine coupling constant is estimated to be 125Ahf=−67 kOe/μB, and a strong interlayer coupling among staircase Kagomé planes is suggested with such a large hyperfine coupling, according to the lattice structure. The 63, 65Cu NMR spectra are found by the zero-field (ZF) NMR at T=2 K, and the internal hyperfine fields are estimated to be 10.3 T and 9.6 T, for Cu(1) and Cu(2) sites, respectively, in the lattice. A second type of ZF NMR signal with a large rf enhancement is also seen after field-cycling through a high magnetic field.

Received: 25 July 2015      Published: 05 January 2016
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/127503       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/127503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Jia
WANG Peng-Shuai
SUN Shan-Shan
PANG Fei
ZHANG Jin-Shan
DONG Xiao-Li
YUE Gen
JIN Kui
CONG Jun-Zhuang
Sun Yang
YU Wei-Qiang

[1] Sachdev S 1992 Phys. Rev. B 45 12377
[2] Lecheminant P et al 1997 Phys. Rev. B 56 2521
[3] Yan S et al 2011 Science 332 1173
[4] Depenbrock S et al 2012 Phys. Rev. Lett. 109 067201
[5] Cépas O et al 2008 Phys. Rev. B 78 140405
[6] Schnyder A P et al 2008 Phys. Rev. B 78 174420
[7] Shannon R D and Calvo C 1972 Can. J. Chem. 50 3944
[8] Fuess H et al 1970 Acta Crystallogr. B 26 2036
[9] Sauerbrei E E et al 1973 Acta Crystallogr. B 29 2304
[10] Koteswararao B et al 2013 J. Phys.: Condens. Matter 25 336003
[11] Lawes G et al 2004 Phys. Rev. Lett. 93 247201
[12] Lawes G et al 2005 Phys. Rev. Lett. 95 087205
[13] Owen J and Thornley J H M 1966 Rep. Prog. Phys. 29 675
[14] Morimoto K et al 2006 J. Phys. Soc. Jpn. 75 083709
[15] Turov E A and Petrov M P 1972 Nuclear Magnetic Resonance in Ferro-and Antiferromagnets (New York: Israel Program of Scientific Translations)
[16] Heid C et al 1995 J. Magn. Magn. Mater. 151 123
[17] Chen Y et al 2006 Phys. Rev. B 74 014430
[18] Lorenz B et al 2004 Phys. Rev. Lett. 92 087204
[19] Alloul H 1979 Phys. Rev. Lett. 42 603
[20] Baek S H et al 2006 Phys. Rev. B 74 140410(R)

Related articles from Frontiers Journals
[1] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 127503
[2] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 127503
[3] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 127503
[4] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 127503
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 127503
[6] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 127503
[7] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 127503
[8] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 127503
[9] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 127503
[10] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 127503
[11] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 127503
[12] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 127503
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 127503
[14] LI Da-Chuang, LI Xiao-Man, LI Hu, TAO Rui, YANG Ming, CAO Zhuo-Liang. Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(5): 127503
[15] YANG Ge, CHEN Bin. Villain Transformation for Ferrimagnetic Spin Chain[J]. Chin. Phys. Lett., 2014, 31(06): 127503
Viewed
Full text


Abstract