Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 120501    DOI: 10.1088/0256-307X/32/12/120501
GENERAL |
Monte Carlo Renormalization Group Method to Study the First-Order Phase Transition in the Complex Ferromagnet
MENG Qing-Kuan**, FENG Dong-Tai, GAO Xu-Tuan
School of Science, Shandong University of Technology, Zibo 255049
Cite this article:   
MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan 2015 Chin. Phys. Lett. 32 120501
Download: PDF(833KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An improved Monte Carlo renormalization group method is established. Based on a new model, as well as the generalized Glauber dynamics, the first-order phase transition is studied in the Erd?s–Rényi network, which is used to represent the complex ferromagnet. Both static and dynamic critical exponents can be evaluated simultaneously, and the static critical exponents are evaluated to be independent of the dimension of the system. Thus by using the hyperscaling relation νd*=2, the effective dimension d* of complex networks can be found.
Received: 02 June 2015      Published: 05 January 2016
PACS:  05.10.Ln (Monte Carlo methods)  
  68.35.Rh (Phase transitions and critical phenomena)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/120501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/120501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MENG Qing-Kuan
FENG Dong-Tai
GAO Xu-Tuan
[1] Glauber R J 1963 J. Math. Phys. 4 294
[2] Shopova D V and Uzunov D I 2003 Phys. Rep. 379 1
[3] Ma S K 1976 Phys. Rev. Lett. 37 461
[4] Swendsen R H 1979 Phys. Rev. Lett. 42 859
[5] Tobochnik J, Sarker S and Cordery R 1981 Phys. Rev. Lett. 46 1417
[6] Katz S L, Gunton J D and Liu C P 1982 Phys. Rev. B 25 6008
[7] Lacasse M D, Vi?als J and Grant M 1993 Phys. Rev. B 47 5646
[8] Zhong F and Xu Z 2005 Phys. Rev. B 71 132402
[9] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[10] Erd?s P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[11] Yi I G and Kim B J 2011 Phys. Rev. E 83 033101
[12] Yang J S, Kim I M and Kwak W 2008 Phys. Rev. E 78 051118
[13] Albert R, Jeong H and Barabási A L 1999 Nature 401 130
[14] Barabási A L and Albert R 1999 Science 286 509
[15] Song C, Havlin S and Makse H A 2005 Nature 433 392
[16] Goh K I, Salvi G, Kahng B and Kim D 2006 Phys. Rev. Lett. 96 018701
[17] Meng Q K, Feng D T, Gao X T and Mei Y X 2012 Chin. Phys. Lett. 29 120502
[18] Fisher M E and Berker A N 1982 Phys. Rev. B 26 2507
Related articles from Frontiers Journals
[1] Sheng Fang, Zongzheng Zhou, and Youjin Deng. Geometric Upper Critical Dimensions of the Ising Model[J]. Chin. Phys. Lett., 2022, 39(8): 120501
[2] Xu Han, Zhaolong Wu, Tian Yang, and Qi Ouyang. Cryo-EM Data Statistics and Theoretical Analysis of KaiC Hexamer[J]. Chin. Phys. Lett., 2022, 39(7): 120501
[3] Xiao Yang, Fan Wu, Dong-Dong Hu, Shuang Zhang, Meng-Bo Luo. Simulation of the Critical Adsorption of Semi-Flexible Polymers[J]. Chin. Phys. Lett., 2019, 36(9): 120501
[4] Dong-Yi Wang, Cheng Tan, Kevin Huang, Lei Shu. The Complex Magnetism in the Breathing Pyrochlore LiIn(Cr$_{1-x}$Rh$_x$)$_4$O$_8$[J]. Chin. Phys. Lett., 2016, 33(12): 120501
[5] PENG Chun, ZHANG Hong, CHENG Xin-Lu. Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar][J]. Chin. Phys. Lett., 2013, 30(11): 120501
[6] LEI Xiao-Wei, ZHAO Xiao-Yu. Dynamic Simulation of Kosterlitz-Thouless Transition in Two-Dimensional Fully Frustrated XY Model[J]. Chin. Phys. Lett., 2009, 26(1): 120501
[7] ZHAO Jian, LI Shui-Xiang. Numerical Simulation of Random Close Packings in Particle Deformation from Spheres to Cubes[J]. Chin. Phys. Lett., 2008, 25(11): 120501
[8] LI Shui-Xiang, ZHAO Jian, ZHOU Xuan. Numerical Simulation of Random Close Packing with Tetrahedra[J]. Chin. Phys. Lett., 2008, 25(5): 120501
[9] LIU Zhi-Qing, LI Run-Ze, XU Ming-Mei, LIU Lian-Shou. A Measure for Isotropy-Equilibrium Degree of a Multi-Particle System[J]. Chin. Phys. Lett., 2008, 25(2): 120501
[10] SHAO Yuan-Zhi, J. K. L. Lai, C. H. Shek, LIN Guang-Min, LAN Tu. Nonequilibrium Dynamical Phase Transition of a Three-Dimensional Kinetic Heisenberg Spin System[J]. Chin. Phys. Lett., 2002, 19(9): 120501
[11] LIU Gang, HAN Ru-Shan. Dynamic Behaviour of Vortex Matter, Memory Effect and Mittag--Leffler Relaxation[J]. Chin. Phys. Lett., 2001, 18(2): 120501
Viewed
Full text


Abstract