Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 120401    DOI: 10.1088/0256-307X/32/12/120401
GENERAL |
Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ
Verma M. K.1, Chandel S.2**, Ram Shri2**
1Department of Mathematics, BBD NITM, Lucknow 226028, India
2Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
Cite this article:   
Verma M. K., Chandel S., Ram Shri 2015 Chin. Phys. Lett. 32 120401
Download: PDF(437KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate a two-fluid anisotropic plane symmetric cosmological model with variable gravitational constant G(t) and cosmological term Λ(t). In the two-fluid model, one fluid is chosen to be that of the radiation field modeling the cosmic microwave background and the other one a perfect fluid modeling the material content of the universe. Exact solutions of the field equations are obtained by using a special form for the average scale factor which corresponds to a specific time-varying deceleration parameter. The model obtained presents a cosmological scenario which describes an early acceleration and late-time deceleration. The gravitation constant increases with the cosmic time whereas the cosmological term decreases and asymptotically tends to zero. The physical and kinematical behaviors of the associated fluid parameters are discussed.
Received: 03 August 2015      Published: 05 January 2016
PACS:  04.20.-q (Classical general relativity)  
  04.20.Jb (Exact solutions)  
  98.80.Jk (Mathematical and relativistic aspects of cosmology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/120401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/120401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Verma M. K.
Chandel S.
Ram Shri
[1] Coley A A and Tupper B O J 1986 J. Math. Phys. 27 406
[2] Coley A A 1988 Astrophys. Space Sci. 140 175
[3] Letelier P S 1980 Phys. Rev. D 22 807
[4] Dunn K A 1989 Gen. Relativ. Gravit. 21 137
[5] Coley A A and Dunn K A 1990 Astrophys. J. 348 26
[6] Pant D N and Oli S 2002 Astrophys. Space Sci. 281 623
[7] Oli S 2008 Astrophys. Space Sci. 314 89
[8] Oli S 2008 Astrophys. Space Sci. 314 95
[9] Adhav K S et al 2011 Electron. J. Theor. Phys. 8 339
[10] Adhav K S et al 2011 Int. J. Theor. Phys. 50 1846
[11] Singh M K et al 2013 Int. J. Theor. Phys. 52 227
[12] Meta V G et al 2013 Int. J. Theor. Phys. 52 2446
[13] Samanta G C 2013 Int. J. Theor. Phys. 52 4015
[14] Meta V G et al 2013 Int. J. Theor. Phys. 52 4439
[15] Behera D et al 2010 Int. J. Theor. Phys. 49 2569
[16] Beesham A 1986 Nuovo Cimento B 96 17
[17] Beesham A 1986 Int. J. Theor. Phys. 25 1295
[18] Berman M S 1991 Gen. Relativ. Gravit. 23 465
[19] Kalligas D et al 1992 Gen. Relativ. Gravit. 24 351
[20] Arbab A I 1997 Gen. Relativ. Gravit. 29 61
[21] Abdussattar and Vishwakarma R G 1997 Class. Quantum Grav. 14 945
[22] Barrow J D and Parsons P 1997 Phys. Rev. D 55 1906
[23] Shri Ram and Verma M K 2010 Astrophys. Space Sci. 330 151
[24] Akarsu O and Dereli T 2012 Int. J. Theor. Phys. 51 612
[25] Singh J P 2008 Astrophys. Space Sci. 318 103
[26] Banerjee N and Das S 2005 Gen. Relativ. Gravit. 37 1695
[27] Ellis G F R and Madsen M 1991 Class. Quantum Grav. 8 667
[28] Singha A K and Debnath U 2009 Int. J. Theor. Phys. 48 351
[29] Berman M S 1983 Nuovo Cimento B 74 182
[30] Abdussattar and Prajapati S R 2011 Astrophys. Space Sci. 331 657
[31] Shri Ram and Priyanka 2014 Cent. Eur. J. Phys. 12 744
[32] Levit L S 1980 Lett. Nuovo Cimento 29 23
[33] Sistero A F 1991 Gen. Relativ. Gravit. 23 1265
[34] Vishwakarma R G 2003 Mon. Not. R. Astron. Soc. 345 545
Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 120401
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 120401
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 120401
[4] M. Azam, S. A. Mardan, M. A. Rehman. The Stability of Some Viable Stars and Electromagnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 120401
[5] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 120401
[6] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 120401
[7] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 120401
[8] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 120401
[9] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 120401
[10] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 120401
[11] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 120401
[12] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 120401
[13] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 120401
[14] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 120401
[15] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 120401
Viewed
Full text


Abstract