Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 114204    DOI: 10.1088/0256-307X/32/11/114204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD
MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing**, ZHANG Tian-Yong, WANG Ying
Institute of Optical Information, and Key Lab of Luminescence and Optical Information Technology (Ministry of Education), Beijing Jiaotong University, Beijing 100044
Cite this article:   
MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing et al  2015 Chin. Phys. Lett. 32 114204
Download: PDF(1046KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and experimentally demonstrate a novel all-optical non-return-to-zero differential-phase-shift-keying (NRZ-DPSK) to return-to-zero differential-phase-shift-keying (RZ-DPSK) format conversion scheme. This scheme is based on the terahertz optical asymmetric demultiplexer (TOAD). A 10 Gb/s converted RZ-DPSK signal is obtained with a wide duty cycle tuning range from 16% to 66%. For all converted RZ-DPSK signals, the receiver sensitivities at BER of 10?9 are 0.4 to 1.7 dB higher compared with the original NRZ-DPSK signal. The clear and open eye diagrams are presented to demonstrate the high quality format conversion performance. Moreover, the optical spectra show that this conversion is in a wavelength-preserving operation.
Received: 05 August 2015      Published: 01 December 2015
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.25.Kb (Coherence)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/114204       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/114204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MAO Ya-Ya
SHENG Xin-Zhi
WU Chong-Qing
ZHANG Tian-Yong
WANG Ying
[1] Willner A E, Khaleghi S, Chitgarha M R and Yilmaz O F 2014 J. Lightwave Technol. 32 660
[2] Lei G K P and Shu C 2012 Opt. Commun. 285 2525
[3] Yu Y, Zhang X and Huang D 2007 Opt. Express 15 5693
[4] Dong J, Zhang X, Xu J, Huang D and Fu S 2007 Opt. Express 15 2907
[5] Wang L, Dai Y H, Lei G and Du J B 2011 IEEE Photon. Technol. Lett. 23 368
[6] Zou B, Yu Y, Wu W and Zhang X 2012 IEEE Photon. Technol. Lett. 24 1091
[7] Gnauck A H and Winzer P J 2005 J. Lightwave Technol. 23 115
[8] Winzer P J and Essiambre R J 2006 J. Lightwave Technol. 24 4711
[9] Wu W, Yu Y, Hu S, Zou B and Zhang X 2012 IEEE Photon. Technol. Lett. 24 1606
[10] Xiang L, Gao D, Zou B, Hu S and Zhang X 2013 Sci. Chin. Technol. Sci. 56 558
[11] Xiong M, Ozolins O, Ding Y and Huang B 2012 Opt. Express 20 27263
[12] Cao H, Shu X, Atai J, Gbadebo A and Xiong B 2014 Opt. Express 22 30442
[13] Zhang Z, Pan D, Yu Y and Zhang X 2011 Chin. Phys. Lett. 28 054203
[14] Yu Y, Zou B, Wu W and Zhang X 2011 Opt. Express 19 14720
[15] Sharif G M, Nguyen Q, Matsuura M and Kishi N 2014 IEICE Trans. Electron. E97.C 755
[16] Chattopadhyay T 2010 Appl. Opt. 49 5226
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 114204
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 114204
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 114204
[4] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 114204
[5] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 114204
[6] Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng, Bo Liu, Rahat Ullah, Feng Tian. Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA[J]. Chin. Phys. Lett., 2017, 34(10): 114204
[7] Chao-Yi Li, Jun-Ming An, Jiu-Qi Wang, Liang-Liang Wang, Jia-Shun Zhang, Jian-Guang Li, Yuan-Da Wu, Yue Wang, Xiao-Jie Yin, Yong Li, Fei Zhong. The 8$\times$10GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection[J]. Chin. Phys. Lett., 2017, 34(10): 114204
[8] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 114204
[9] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Yu-De Yu. Compact Optical Add-Drop De-Multiplexers with Cascaded Micro-Ring Resonators on SOI[J]. Chin. Phys. Lett., 2017, 34(6): 114204
[10] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 114204
[11] Huan Guan, Zhi-Yong Li, Hai-Hua Shen, Rui Wang, Yu-De Yu. A Highly Compact Third-Order Silicon Elliptical Micro-Ring Add-Drop Filter with a Large Free Spectral Range[J]. Chin. Phys. Lett., 2017, 34(3): 114204
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 114204
[13] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 114204
[14] Fei Guo, Dan Lu, Rui-Kang Zhang, Hui-Tao Wang, Wei Wang, Chen Ji. Two-Mode Converters at 1.3μm Based on Multimode Interference Couplers on InP Substrates[J]. Chin. Phys. Lett., 2016, 33(02): 114204
[15] LIU Lan-Lan, WU Chong-Qing, SHANG Chao, WANG Jian, GAO Kai-Qiang. Quaternion Approach to Solve Coupled Nonlinear Schr?dinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems[J]. Chin. Phys. Lett., 2015, 32(08): 114204
Viewed
Full text


Abstract