Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 110301    DOI: 10.1088/0256-307X/32/11/110301
GENERAL |
The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass
LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin**
Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin 2015 Chin. Phys. Lett. 32 110301
Download: PDF(359KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneous electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the harmonic potential theorem wave function when both the effective mass and frequency are static. An example of application is also given.

Received: 17 August 2015      Published: 01 December 2015
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/110301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAI Meng-Yun
XIAO Duan-Liang
PAN Xiao-Yin

[1] Dekker H 1981 Phys. Rep. 80 1
[2] Um C I, Yeon K H and George T F 2002 Phys. Rep. 362 63 and references therein
[3] Caldirola P 1941 Nuovo Cimento 18 393
[4] Kanai E 1948 Prog. Theor. Phys. 3 440
[5] Havas P 1957 Nuovo Cimento Suppl. 5 363
[6] Senitzky I R 1961 Phys. Rev. 124 642
[7] Stevens K W H 1961 Proc. Phys. Soc. London 77 515
[8] Lewis H R Jr 1967 Phys. Rev. Lett. 18 510
[9] Hasse R W 1975 J. Math. Phys. 16 2005
[10] Greenberger D M 1974 J. Math. Phys. 15 395
[11] Dodonov V V and Mon'Ko V J 1978 Nuovo Cimento B 44 265
[12] Janussis A D, Brodimas G N and Streclas A 1979 Phys. Lett. A 74 6
[13] Brinati J R and Mizrahi S S 1980 J. Math. Phys. 21 2154
[14] Remaud B and Hernandez E S 1980 J. Phys. A 13 2013
[15] Lawande S V and Dhara A K 1983 Phys. Lett. A 99 353
[16] Dhara A K and Lawande S V 1984 Phys. Rev. A 30 560
[17] Abdalla M S and Colegrave R K 1985 Phys. Rev. A 32 1958
[18] Dantas Celia M A, Pedrosa I A and Baseia B 1992 Phys. Rev. A 45 1320
[19] Pedrosa I A 1987 Phys. Rev. D 36 1279
[20] Yu L Y and Sun C P 1994 Phys. Rev. A 49 592
[21] Ji J Y and Kim J K 1995 Phys. Rev. A 51 4268
[22] Marchiolli M A and Mizrahi S S 1997 J. Phys. A 30 2919
[23] Pedrosa I A, Serra G P and Guedes I 1997 Phys. Rev. A 56 4300
[24] Choi J R 2003 J. Phys.: Condens. Matter 15 823
[25] Harari G, Ben-Aryeh Y and Mann A 2011 Phys. Rev. A 84 062104
[26] Glauber R J 1963 Phys. Rev. Lett. 10 84
[27] Agarwal G S and Kumar S A 1991 Phys. Rev. Lett. 67 3665
[28] Yuen H P 1976 Phys. Rev. A 13 2226
[29] Paul W 1990 Rev. Mod. Phys. 62 531
[30] Brown L S 1991 Phys. Rev. Lett. 66 527
[31] Fulling S A 1982 Aspects of Quantum Fields in Curved Space (Cambridge: Cambridge University Press)
[32] Vergel D G and Villasenor E J 2009 Ann. Phys. 324 1360 and references therein
[33] Kohen D, Marston C C and Tannor D J 1997 J. Chem. Phys. 107 1
[34] Pedrosa I A and Rosas A 2009 Phys. Rev. Lett. 103 010402
[35] Singh S K and Mandal S 2010 Opt. Commun. 283 4685
[36] Harari G, Ben-Aryeh Y and Mann A 2011 Phys. Rev. A 84 062104
[37] Pedrosa I A 2011 Phys. Rev. A 83 032108
[38] Kim H C, Lee M H, Ji J Y and Kim J K 1996 Phys. Rev. A 53 3767
[39] Khandekar D C and Lawaude S V 1975 J. Math. Phys. 16 384
       Khandekar D C and Lawaude S V 1977 J. Math. Phys. 18 1870
[40] Um C I, Yeon K H and Kahng W H 1987 J. Phys. A: Math. Gen. 20 611
[41] Dutra A S and Cheng B K 1989 Phys. Rev. A 39 5897
[42] Song D Y 2000 Phys. Rev. A 61 024102
[43] Yeon K H, Kim D H, Um C I, George T F and Pandey L N 1997 Phys. Rev. A 55 4023
[44] Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458
[45] Dodonov V V and Man'ko V I 1979 Phys. Rev. A 20 550
[46] Yeon K H, Um C I and George T F 2003 Phys. Rev. A 68 052108
[47] Dobson J F 1994 Phys. Rev. Lett. 73 2244
[48] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[49] Ullrich C A 2012 Time-Dependent Density Functional Theory (Oxford: Oxford University Press)
[50] Marques M A L et al 2006 Time-Dependent Density Functional Theory (Berlin: Springer-Verlag)
[51] Gross E K U, Dobson J F and Petersilka M 1996 Top. Curr. Chem. 181 edited by Nalewajski R F(Springer-Verlag, Berlin)
[52] Sahni V 2004 Quantal Density Functional Theory (Berlin: Springer-Verlag)
[53] Qian Z and Sahni V 1998 Phys. Lett. A 247 303
[54] Qian Z and Sahni V 2000 Int. J. Quantum Chem. 78 341
[55] Qian Z and Sahni V 2001 Phys. Rev. A 63 042508
[56] Sahni V 2003 Electron. Correlations Mater. Properties 2 (New York: Kluwer Academic/Plenum Publishers)
[57] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[58] Shi Y R, Wang G H, Liu C B, Zhou Z G and Yang H J 2012 Chin. Phys. Lett. 29 110302
[59] Qi W, Liang Z X and Zhang Z D 2013 Chin. Phys. Lett. 30 060303
[60] Chen J W, Yang T and Pan X Y 2013 Chin. Phys. Lett. 30 020303
[61] Li Y Q, Pan X Y and Sahni V 2013 J. Chem. Phys. 139 114301
[62] Yip S K 1991 Phys. Rev. B 43 1707
[63] Yu A Firsov and Gurevitch V L 1961 Zh. Eksp. Teor. Fiz 41 512
       Yu A Firsov and Gurevitch V L 1962 Sov. Phys. JETP 14 367 [64] Maksym P A and Chakraborty T 1990 Phys. Rev. Lett. 65 108
[65] Song D Y 1999 Phys. Rev. A 59 2616
[66] Song D Y 2001 Phys. Rev. A 63 032104
[67] Sutherland B 1971 J. Math. Phys. 12 246
       Sutherland B 1971 J. Math. Phys. 12 251

Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 110301
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 110301
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 110301
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 110301
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 110301
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 110301
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 110301
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 110301
[9] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 110301
[10] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 110301
[11] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 110301
[12] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 110301
[13] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 110301
[14] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 110301
[15] CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi. Computation of Quantum Bound States on a Singly Punctured Two-Torus[J]. Chin. Phys. Lett., 2013, 30(1): 110301
Viewed
Full text


Abstract