CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fabrication of Through Micro-hole Arrays in Silicon Using Femtosecond Laser Irradiation and Selective Chemical Etching |
GAO Bo, CHEN Tao**, CHEN Ying, SI Jin-Hai, HOU Xun |
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics & information Engineering, Xi'an Jiaotong University, Xi'an 710049
|
|
Cite this article: |
GAO Bo, CHEN Tao, CHEN Ying et al 2015 Chin. Phys. Lett. 32 107901 |
|
|
Abstract We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy. The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.
|
|
Received: 24 May 2015
Published: 30 October 2015
|
|
PACS: |
79.20.Eb
|
(Laser ablation)
|
|
79.20.Ws
|
(Multiphoton absorption)
|
|
82.30.-b
|
(Specific chemical reactions; reaction mechanisms)
|
|
|
|
|
[1] Motoyoshi M 2009 Proc. IEEE 97 43 [2] Liu X X, Zhu Z M, Yang Y T, Wang F J and Ding R X 2014 Chin. Phys. B 23 583 [3] Dong G, Wu W X and Yang Y T Acta Phys. Sin. 64 026601 (in Chinese) [4] Beetz C P, Boerstler R, Steinbeck J, Lemieux B and Winn D R 2000 Nucl. Instrum. Methods Phys. Res. Sect. A 442 443 [5] Siegmund O H W, Tremsin A S, Vallerga J V, Beetz C P, Boerstler R W, Yang J and Winn D R 2002 Proc. SPIE 4497 139 [6] Lapington J S, Ashton T J R, Ross D and Conneely T 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 695 78 [7] Chen X M, Lin J L, Yuan D, Ci P L, Xin P S, Xu S H and Wang L W 2008 J. Micromech. Microeng. 18 037003 [8] Wang F, Xu S H, Zhu S S, Peng H, Huang R, Wang L W, Xie X H and Chu P K 2013 Electrochim. Acta 87 250 [9] Yu S J, Luo C H, Wang L W, Peng H and Zhu Z Q 2013 Analyst 138 1149 [10] Ma X Z, Zhang R, Sun J B, Shi Y and Zhao Y 2015 Chin. Phys. Lett. 32 045202 [11] Mukherjee P, Zurbuchen T H and Guo L J 2009 Nanotechnology 20 325301 [12] Tan D Z, Zhou S F, Qiu J R and Khusro N 2013 J. Photochem. Photobio. C-Photochem. Rev. 17 50 [13] Qiu J R 2004 Chem. Rec. 4 50 [14] Wang J L, He B R, Dai S X, Zhu J F and Wei Z Y 2015 IEEE Photon. Technol. Lett. 27 1041 [15] Matsuo S and Hashimoto S 2015 Opt. Express 23 165 [16] Wu Q, Xu J J, Zhang G Q, Zhao L J, Zhang X Z, Qiao H J, Sun Q, Lu W Q, Zhang G Y and Volk T R 2003 Opt. Mater. 23 277 [17] Gattass R R and Mazur E 2008 Nat. Photon. 2 219 [18] Laakso P, Penttil? R and Heimala P 2010 J. Laser Micro/Nanoen. 5 273 [19] Ahn S, Hwang D J, Park H K and Grigoropoulos C P 2012 Appl. Phys. A 108 113 [20] Ma Y C, Pan A, Si J H, Chen T, Chen F and Hou X 2012 Opt. Commun. 285 140 [21] Coyne E, O'Connor G M, Mannion P, Magee J and Glynn T J 2004 Proc. SPIE 5339 73 [22] Pan A, Gao B, Chen T, Si J H, Li C X, Chen F and Hou X 2014 Opt. Express 22 15245 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|