FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Cr2+:ZnS Saturable Absorber Passively Q-Switched Ho:LuVO4 Laser |
CUI Zheng1, YAO Bao-Quan1**, DUAN Xiao-Ming1, BAI Shuang1, LI Jiang2**, YUAN Jin-He1, DAI Tong-Yu1, LI Chao-Yu2, PAN Yu-Bai2 |
1National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 2Key Laboratory of Transparent and Opto-functional Advanced Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
|
|
Cite this article: |
CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming et al 2015 Chin. Phys. Lett. 32 104208 |
|
|
Abstract We report a cw Tm:YAP laser resonantly pumped Ho:LuVO4 laser in passively Q-switched (PQS) mode with Cr2+:ZnS as a saturable absorber (SA). The influence of different transmittances of the output coupler on laser output performance is analyzed. With T=50%, the maximum PQS average output power of 2.3 W is obtained, corresponding to the slope efficiency and the optical–optical conversion efficiency are 35.1% and 19.8%, respectively. Also, the minimum pulse width of 100 ns is achieved at the maximum pulse repetition frequency of 34.2 kHz. When the maximum cw output power is 2.7 W, the beam quality factor of the horizontal direction M2x=1.04 and the vertical direction M2y=1.10 are obtained. In addition, the central wavelength of the laser output remains to be 2057.5 nm with the output coupler transmittances of 50% and 60% in both cw and PQS operations. The results show that the Cr2+:ZnS can be used as an SA in a Ho:LuVO4 laser around 2-μm wavelength.
|
|
Received: 04 July 2015
Published: 30 October 2015
|
|
PACS: |
42.60.Gd
|
(Q-switching)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
|
|
|
[1] Temel B, ?zgür T, Hamit K, Adnan K, Alphan S and Murat G 2009 Proc. CLEO. CL_P11 [2] Sigrist M W 2003 Rev. Sci. Instrum. 74 486 [3] Gower M C 2000 Opt. Express 7 56 [4] Lippert E, Fonnum H, Arisholm G and Stenersen K 2010 Opt. Express 18 26475 [5] Dergachev A and Moulton P F 2003 Adv. Solid State Photon. 83 137 [6] Nodop D, Limpert J, Hohmuth R, Richter W, Guina M and Tünnermann A 2007 Opt. Lett. 32 2115 [7] Bhandari R and Taira T 2011 Opt. Express 19 19135 [8] Qu Z S, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Appl. Phys. B 109 143 [9] Yao B Q, Cui Z, Duan X M, Shen Y J, Wang J and Du Y Q 2014 Chin. Phys. Lett. 31 074204 [10] Du Y Q, Yao B Q, Cui Z, Duan X M, Dai T Y, Ju Y L, Pan Y B, Chen M and Shen Z C 2014 Chin. Phys. Lett. 31 064209 [11] Simanovskii D M, Schwettman H A, Lee H and Welch A J 2003 Phys. Rev. Lett. 91 107601 [12] Mirov S, Fedorov V, Moskalev I, Martyshkin D and Kim C 2010 Laser Photon. Rev. 4 21 [13] Wu S F, Wang G F, Xie J L, Wu X Q and Li G S 2003 J. Cryst. Growth 249 176 [14] Yu H H, Pan Z B, Zhang H J, Wang Z P, Wang J Y and Jiang M H 2011 Opt. Lett. 36 2402 [15] Trapani F D, Mateos X, Petrov V, Agnesi A, Griebner U, Zhang H, Wang J and Yu H 2014 Laser Phys. 24 035806 [16] Yao B Q, Cui Z, Duan X M, Du Y Q, Han L and Shen Y J 2014 Opt. Lett. 39 6328 [17] Cui Z, Yao B Q, Duan X M, Xu S, Du Y Q, Yuan J H, Dai T Y and Ju Y L 2015 Opt. Express 23 13482 [18] Barnes N P, Walsh B M and Filer E D 2003 J. Opt. Soc. Am. B 20 1212 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|