Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 100303    DOI: 10.1088/0256-307X/32/10/100303
GENERAL |
Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field
Faizi E., Eftekhari H.**
Department of Physics, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran
Cite this article:   
Faizi E., Eftekhari H. 2015 Chin. Phys. Lett. 32 100303
Download: PDF(10264KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We consider an entangled Ising-XYZ diamond chain structure. Quantum correlations for this model are investigated by using quantum discord and trace distance discord. Quantum correlations are obtained for different values of the anisotropy parameter, magnetic field and temperature. By comparison between quantum correlations, we show that the trace distance discord is always larger than quantum discord. Finally, some novel effects such as increasing the quantum correlations with temperature and constructive role of anisotropy parameter, which may play to the quantum correlations, are observed.

Received: 05 May 2015      Published: 30 October 2015
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/100303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/100303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Faizi E.
Eftekhari H.

[1] Vedral V 2007 Introduction to Quantum Information Science (Oxford: Oxford University Press)
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Taylor P L and Heinonen O 2000 A Quantum Approach to Condensed Matter Physics (Cambridge: Cambridge University Press)
[4] Bose S 2003 Phys. Rev. Lett. 91 207901
[5] Burgarth D and Bose S 2005 Phys. Rev. A 71 052315
[6] Kane B E 1998 Nature 393 133
[7] Kane B E 2000 Fortschr. Phys. 48 1023
[8] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[9] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[10] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[11] Amico L, Baroni F, Fubini A, Patane D, Tognetti V and Verrucchi P 2006 Phys. Rev. A 74 022322
[12] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[13] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[14] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[15] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[16] Brodutch A and Terno D R 2011 Phys. Rev. A 83 010301
[17] Madhok V and Datta A 2011 Phys. Rev. A 83 032323
[18] Ali A et al 2010 Phys. Rev. A 81 042105
[19] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[20] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[21] Ozawa M 2000 Phys. Lett. A 268 158
[22] Ruskai M B 1994 Rev. Math. Phys. 6 1147
[23] Ma X S, Ren M F, Zhao G X et al 2011 Sci. Chin. Phys. Mech. Astron. 54 1833
[24] Guo K T, Liang M C, Xu H Y et al 2011 Sci. Chin. Phys. Mech. Astron. 54 491
[25] Vrijen R, Yablonovitch E, Wang K et al 2000 Phys. Rev. A 62 012306
[26] Sorensen A and Molmer K 1999 Phys. Rev. Lett. 83 2274
[27] Lidar D A, Bacon D and Whaley K B 1999 Phys. Rev. Lett. 82 4556
[28] Honecker A, Hu S, Peters R and Ritcher J 2011 J. Phys.: Condens. Matter 23 164211
[29] Canova L, Strecka J and Jascur M 2006 J. Phys.: Condens. Matter 18 4967
[30] Lisnii B M 2011 Ukr. J. Phys. 56 1237
[31] Valverde J S, Rojas O and de Souza S M 2008 J. Phys.: Condens. Matter 20 345208
[32] Rojas O, Rojas M, Ananikian N S and de Souza S M 2012 Phys. Rev. A 86 042330
[33] Torrico J, Rojas M, de Souza S M, Rojas O and Ananikian N S 2014 Europhys. Lett. 108 50007
[34] Faizi E and Eftekhari H 2014 Rep. Math. Phys. 74 2
[35] Paula F M, de Oliveira T R and Sarandy M S 2013 Phys. Rev. A 87 064101
[36] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
[37] Ciccarello F, Tufarelli T and Giovannetti V 2014 New J. Phys. 16 013038
[38] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[39] Amico L, Osterloh A et al 2004 Phys. Rev. A 69 022304
[40] Maziero J, Guzman H C, Celeri L C et al 2010 Phys. Rev. A 82 012106

Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 100303
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 100303
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 100303
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 100303
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 100303
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 100303
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 100303
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 100303
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 100303
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 100303
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 100303
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 100303
[13] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 100303
[14] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 100303
[15] XU Feng, WANG Li-Fei, CUI Xiao-Dong. Quantum Interference by Entangled Trajectories[J]. Chin. Phys. Lett., 2015, 32(08): 100303
Viewed
Full text


Abstract