Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 098103    DOI: 10.1088/0256-307X/32/9/098103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property
ZHANG Yong1,2, XIE Long-Zhen1, LI Hai-Rong1, WANG Peng1, LIU Su1, PENG Ying-Quan1**, ZHANG Miao3
1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
2Editorial Board of Journal of Lanzhou University, Lanzhou 730000
3Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
Cite this article:   
ZHANG Yong, XIE Long-Zhen, LI Hai-Rong et al  2015 Chin. Phys. Lett. 32 098103
Download: PDF(1927KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this study, rose-like nickel oxide (NiO) nanoparticles with diameters of 400–500 nm are prepared on ITO glass substrates by simple electrodeposition in NiSO46H2O solution at room temperature followed by oxidation in air. Scanning electron microscopy, x-ray diffraction and a transmission electron microscope are used for analyses of the NiO nanoparticles. The ethanol gas sensitivity of these nanoparticles is studied. The results indicate that the rose-like NiO nanoparticles could be used for the fabrication of ethanol gas sensors to monitor the low concentration of ethanol gas in air. Furthermore, at 5 ppm, the NiO nanorose-based sensors show a high response to ethanol (Rg/Ra=8.4).
Received: 18 March 2015      Published: 02 October 2015
PACS:  81.15.Pq (Electrodeposition, electroplating)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/098103       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/098103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yong
XIE Long-Zhen
LI Hai-Rong
WANG Peng
LIU Su
PENG Ying-Quan
ZHANG Miao
[1] Castro-Hurtado I, Herran J and Perez N 2011 Sens. Lett. 9 64
[2] Rahman M M, Chou S L, Zhong C, Wang J Z, Wexler D and Liu H K 2010 Solid State Ionics 180 1646
[3] Prasad D H, Ji H I, Kim H R, Son J W, Kim B K and Lee H W 2011 Appl. Catal. B 101 531
[4] Xing W, Li F, Yan Z and Lu G Q 2004 J. Power Sources 134 324
[5] Wu M S and Hsieh H H 2008 Electrochim. Acta 53 3427
[6] Snook G A, Duffy N W and Pandolfo A G 2008 J. Electrochem. Soc. 155 A262
[7] El-Shafei A A 1999 J. Electroanal. Chem. 471 89
[8] Abdel Rahim M A, Abdel Hameed R M and Khalil M W 2004 J. Power Sources 134 160
[9] Hu Y J, Jin J, Wu P, Zhang H and Cai C X 2010 Electrochim. Acta 56 491
[10] Kwon S Y, Kwen H D and Choi S H 2012 J. Sens. 2012 1
[11] Kuo T Y, Chen S C, Peng W C, Lin Y C and Lin H C 2011 Thin Solid Films 519 4940
[12] Zhou Y, Gu D H, Geng Y Y and Gan F X 2006 Mater. Sci. Eng. B 135 125
[13] Zayim E O, Turhan I, Tepehan F Z and Ozer N 2008 Sol. Energy Mater. Sol. Cells 92 164
[14] Zhu Z F, Wei N, Liu H and He Z L 2011 Powder Technol. 22 422
[15] Uplane M M, Mujawar S H, Inamdar A I, Shinde P S, Sonavane A C and Patil P S 2007 Appl. Surf. Sci. 253 9365
[16] Smetana A B, Klabunde K J and Sorensen C M 2005 J. Colloid Interface Sci. 284 521
[17] Inamdar A I, Mujawar S H, Ganesan V and Patil P S 2008 Nanotechnology 19 325706
[18] Lu L, Shen Y F, Chen X H, Qian L H and Lu K 2004 Science 304 422
[19] Gu C D, Lian J S, Jiang Z H and Jiang Q 2006 Scr. Mater. 54 579
[20] Shen Y F, Xue W Y, Wang Y D, Liu Z Y and Zuo L 2008 Surf. Coat. Technol. 202 5140
[21] Choi K S, Jang H S, McShane C M, Read C G and Seabold J A 2010 Mater. Res. Bull. 35 753
[22] Endres F, Bukowski M, Hempelmann R and Natter H 2003 Angew. Chem. Int. Ed. 42 3428
[23] Gu C D, Lian J S and Jiang Q 2007 Scr. Mater. 57 233
[24] Zhang P Z, Li R S, Pan X J and Xie E Q 2013 Chin. Phys. B 22 058106
[25] Gong J F, Dou Z M, Wang Z Q, Zhang B, Zhu W H, Zhang K Y, Liu M Z, Zhu H and Zhou J F 2012 Chin. Phys. B 21 068101
[26] Li Z W, Yang X, Wang H B, Liu X and Li F S and 2009 Chin. Phys. B 18 4829
[27] Manikandan E, Murugan V, Kavitha G, Babu P and Maaz M 2014 Mater. Lett. 131 225
[28] Xiang J Y, Tu J P, Wang X L, Huang X H and Zeng Z Y 2009 Electrochim. Acta 54 1160
[29] Bayram K, Taylan G, Ilknur B, Merve S and Sebahattin T 2014 Appl. Surf. Sci. 318 32
[30] Jiang Y J, Li M C, Ding R Q, Song D D, Trevor M and Chen Z 2013 Mater. Lett. 107 210
[31] Martín F, Ramos-Barrado J R and Sánchezb M 2004 Electrochim. Acta 49 4589
[32] Pan Q M, Jin H Z, Wang H B and Yin G P 2007 Electrochim. Acta 53 951
[33] Fang S, Jing S and Lian G 2011 ACS Appl. Mater. Interfaces 3 2148
[34] Miao B, Zeng W, Lin L Y and Xu S 2013 Physica E 52 40
[35] Hotovy I, Spiess L, Predanocy M, Rehaceka V and Racko J 2014 Vacuum 107 129
[36] Lin L Y, Liu T M, Miao B and Zeng W 2013 Mater. Res. Bull. 48 449
[37] Luo X J, Lou Z, Wang L L, Zheng X J and Zhang T 2014 New J. Chem. 38 84
Related articles from Frontiers Journals
[1] Zhekai Zhang, Jiyu Tian, Junfei Chen, Yugui He, Chaoyang Liu, Xinmiao Liang, and Jiwen Feng. Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR[J]. Chin. Phys. Lett., 2021, 38(12): 098103
[2] KONG Ling-Bin, LU Mei, LI Meng-Ke, GUO Xin-Yong, LI Hu-Lin. Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminum Oxide Template Characterized by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2003, 20(5): 098103
[3] Quan Li, Yang Yang, Xiqian Yu, and Hong Li. A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery[J]. Chin. Phys. Lett., 2023, 40(4): 098103
Viewed
Full text


Abstract