Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 097802    DOI: 10.1088/0256-307X/32/9/097802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Time-Resolved Photoluminescence Study of Silicon Nanoporous Pillar Array
WANG Xiao-Bo1,2, YAN Ling-Ling1,3, LI Yong4, LI Xin-Jian1**
1Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052
2School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000
3College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000
4Department of Physics, Pingdingshan University, Pingdingshan 467000
Cite this article:   
WANG Xiao-Bo, YAN Ling-Ling, LI Yong et al  2015 Chin. Phys. Lett. 32 097802
Download: PDF(709KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A silicon nanoporous pillar array (Si-NPA) is thought to be a promising functional substrate for constructing a variety of Si-based optoelectronic nanodevices, due to its unique hierarchical structure and enhanced physical properties. This makes the in-depth understanding of the photoluminescence (PL) of Si-NPA crucial for both scientific research and practical applications. In this work, the PL properties of Si-NPA are studied by measuring both the steady-state and time-resolved PL spectrum. Based on the experimental data, the three PL bands of Si-NPA, i.e., the ultraviolet band, the purple-blue plateau and the red band are assigned to the oxygen-excess defects in Si oxide or silanol groups at the surface of Si nanocrystallites (nc-Si), oxygen deficiency defects in Si oxide, and band-to-band transition of nc-Si under the frame of quantum confinement combining with the surface states like Si=O and Si–O–Si bonds at the surface of nc-Si, respectively. These results may provide some novel insight into the PL process of Si-NPA and may be helpful for clarifying the PL mechanism.
Received: 17 February 2015      Published: 02 October 2015
PACS:  78.47.jd (Time resolved luminescence)  
  78.55.Mb (Porous materials)  
  78.60.Lc (Optically stimulated luminescence)  
  78.67.Hc (Quantum dots)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/097802       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/097802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Bo
YAN Ling-Ling
LI Yong
LI Xin-Jian
[1] Canham L T 1990 Appl. Phys. Lett. 57 1046
[2] Lin L H et al 2011 J. Appl. Phys. 110 073109
[3] Ledoux G et al 2000 Phys. Rev. B 62 15942
[4] Iacona F, Franzo G and Spinella C 2000 J. Appl. Phys. 87 1295
[5] Namavar F, Maruska H P and Kalkhoran N M 1992 Appl. Phys. Lett. 60 2514
[6] Tsybeskov L et al 1996 Appl. Phys. Lett. 68 2058
[7] Ng W L et al 2001 Nature 410 192
[8] Walters R J, Bourianoff G I and Atwater H A 2005 Nat. Mater. 4 143
[9] Maier-Flaig F et al 2013 Nano Lett. 13 475
[10] Xu H J and Li X J 2008 Opt. Express 16 2933
[11] Xu H J, Li D Y and Li X J 2009 Physica E 41 1882
[12] He C et al 2011 J. Appl. Phys. 110 094316
[13] Li X J and Jiang W F 2007 Nanotechnology 18 065203
[14] Wang L L et al 2013 Sens. Actuators B 177 740
[15] Han C B, He C and Li X J 2011 Adv. Mater. 23 4811
[16] Li Y et al 2014 Chin. Phys. Lett. 31 047801
[17] Qin G G et al 1996 Appl. Phys. Lett. 69 1689
[18] Kanashima T, Okuyama M and Hamakawa Y 1994 Appl. Surf. Sci. 79 321
[19] Song H et al 2008 Appl. Surf. Sci. 254 5655
[20] Zhang Y S et al 2010 J. Lumin. 130 1005
[21] Yang X et al 2005 Appl. Phys. Lett. 86 201906
[22] Yu D P et al 1998 Appl. Phys. Lett. 73 3076
[23] Wu X C et al 2001 Chem. Phys. Lett. 336 53
[24] Kontkiewicz A J et al 1994 Appl. Phys. Lett. 65 1436
[25] Tsybeskov L, Vandyshev J and Fauchet P 1994 Phys. Rev. B 49 7821
[26] Cullis A G 1997 J. Appl. Phys. 82 909
[27] Bisi O, Ossicini S and Pavesi L 2000 Surf. Sci. Rep. 38 1
[28] Wolkin M V et al 1999 Phys. Rev. Lett. 82 197
[29] Luppi E et al 2007 Phys. Rev. B 75 033303
[30] Khriachtchev L et al 2012 Int. J. Photoenergy 2012 1
[31] Mizuno H, Koyama H and Koshida N 1996 Appl. Phys. Lett. 69 3779
[32] Anedda A et al 2005 J. Phys. Chem. B 109 1239
[33] Kanemitsu Y et al 1994 Phys. Rev. B 49 14732
[34] Valenta J et al 2008 New J. Phys. 10 073022
[35] Nayfeh M H et al 2001 Appl. Phys. Lett. 78 1131
[36] Tetelbaum D I et al 2006 Thin Solid Films 515 333
[37] Skuja L 1998 J. Non-Cryst. Solids 239 16
[38] Stathis J and Kastner M 1987 Phys. Rev. B 35 2972
[39] Trukhin A N 2011 J. Non-Cryst. Solids 357 1931
[40] Anedda A et al 1993 J. Appl. Phys. 74 6993
[41] Spallino L et al 2013 J. Lumin. 138 39
[42] Linnros J et al 1999 J. Appl. Phys. 86 6128
[43] Vial J et al 1992 Phys. Rev. B 45 14171
Related articles from Frontiers Journals
[1] Liang-Sen Feng, Zhe Liu, Ning Zhang, Bin Xue, Jun-Xi Wang, Jin-Min Li. Effect of Nanorod Diameters on Optical Properties of GaN-Based Dual-Color Nanorod Arrays[J]. Chin. Phys. Lett., 2019, 36(2): 097802
[2] LI Hang, ZHANG Xin-Hui. Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As[J]. Chin. Phys. Lett., 2015, 32(06): 097802
[3] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 097802
[4] HE Ping, FAN Rong-Wei, XIA Yuan-Qin, YU Xin, YAO Yong, CHEN De-Ying, ** . Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(4): 097802
Viewed
Full text


Abstract