FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Self-Organized Criticality Theory Model of Thermal Sandpile |
PENG Xiao-Dong1**, QU Hong-Peng1**, XU Jian-Qiang1, HAN Zui-Jiao2 |
1Southwestern Institute of Physics, Chengdu 610041 2Sichuan Administration College, Chengdu 610071
|
|
Cite this article: |
PENG Xiao-Dong, QU Hong-Peng, XU Jian-Qiang et al 2015 Chin. Phys. Lett. 32 094501 |
|
|
Abstract A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics.
|
|
Received: 18 March 2015
Published: 02 October 2015
|
|
PACS: |
45.70.Cc
|
(Static sandpiles; granular compaction)
|
|
52.25.Fi
|
(Transport properties)
|
|
|
|
|
[1] Sattin Fabio and Baiesi Marco 2006 Phys. Rev. Lett. 96 105005 [2] Rhee T, Kwon J M, Diamond P H and Xiao W W 2012 Phys. Plasmas 19 022505 [3] Chapman S C, Dendy R O and Hnat B 2001 Phys. Rev. Lett. 86 2814 [4] Newman D E, Carreras B A, Diamond P H and Hahm T S 1996 Phys. Plasmas 3 1858 [5] Tangri V, Das A, Kaw P and Singh R 2003 Nucl. Fusion 43 1740 [6] Sánchez R, Newman D E, Carreras B A, Woodard R, Ferenbaugh W and Hicks H R 2003 Nucl. Fusion 43 1031 [7] Gruzinov I, Diamond P H and Rosenbluth M N 2002 Phys. Rev. Lett. 89 255001 [8] Gruzinov I, Diamond P H and Rosenbluth M N 2003 Phys. Plasmas 10 569 [9] Carreras B A, Lynch V E, Newman D E and Zaslavsky G M 1999 Phys. Rev. E 60 4770 [10] Ryter F, Angioni C, Beurskens M, Cirant S, Hoang G T, Hogeweij G M D, Imbeaux F, Jacchia A, Mantica P, Suttrop W and Tardini G 2001 Plasma Phys. Control. Fusion 43 A323 [11] Biskamp D 1986 Comments Plasma Phys. Control. Fusion 10 165 [12] Xu Y H, Jachmich S, Weynants R R, Huber A, Unterberg B and Samm U 2004 Phys. Plasmas 11 5413 [13] Callen J D, Hegna C C and Cole A J 2010 Phys. Plasmas 17 056113 [14] Garbet X, Mantica P, Angioni C, Asp E, Baranov Y, Bourdelle C, Budny R, Crisanti F, Cordey G, Garzotti L, Kirneva N, Hogeweij D, Hoang T, Imbeaux F, Joffrin E, Litaudon X, Manini A, McDonald D C, Nordman H, Parail V, Peeters A, Ryter F, Sozzi C, Valovic M, Tala T, Thyagaraja A, Voitsekhovitch I, Weiland J, Weisen H, Zabolotsky A and JET EFDA Contributors 2004 Plasma Phys. Control. Fusion 46 B557 [15] Isliker H, Pisokas Th, Strintzi D and Vlahos L 2010 Phys. Plasmas 17 082303 [16] Casati Alessandro, Bourdelle C, Garbet X and Imbeaux F 2008 Phys. Plasmas 15 042310 [17] Politzer P A and Porter G D 1990 Nucl. Fusion 30 1605 [18] Dendy R O and Helander P 1997 Plasma Phys. Control. Fusion 39 1947 [19] Xu G S , Naulin V, Fundamenski W, Hidalgo C, Alonso J A, Silva C, Goncalves B, Nielsen A H, Juul Rasmussen J, Krasheninnikov S I, Wan B N, Stamp M and JET EFDA Contributors 2009 Nucl. Fusion 49 092002 [20] Fundamenski W, Naulin V, Neukirch T, Garcia O E and Juul R J 2007 Plasma Phys. Control. Fusion 49 R43 [21] Myra J R, Russell D A and D'Ippolito D A 2008 Phys. Plasmas 15 032304 [22] Gimblett C G, Hastie R J and Helander P 2006 Phys. Rev. Lett. 96 035006 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|