ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard |
XU Zhi-Chao1, PAN Duo1, ZHUANG Wei1,2, CHEN Jing-Biao1** |
1State Key Laboratory of Advanced Optical Communication System and Network, Institute of Quantum Electronics, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871 2National Institute of Metrology, Beijing 100013
|
|
Cite this article: |
XU Zhi-Chao, PAN Duo, ZHUANG Wei et al 2015 Chin. Phys. Lett. 32 083201 |
|
|
Abstract The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency standard is proposed, where He-Ne 633 nm and Cs 1359 nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633 nm output frequency to a super-cavity with the Pound–Drever–Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stimulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633 nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359 nm output is estimated to be 72.5 mHz.
|
|
Received: 05 May 2015
Published: 02 September 2015
|
|
|
|
|
|
[1] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 [2] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108 090801 [3] Dube'P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806 [4] Gao K L 2013 Chin. Sci. Bull. 58 853 [5] McFerran J J, Yi L, Mejri S, Manno S D, Zhang W, Guena J, Coq Y L and Bize S 2012 Phys. Rev. Lett. 108 183004 [6] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215 [7] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 [8] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185 [9] Drever R, Hall J L, Kowalski F, Hough J, Ford G, Munley A and Ward H 1983 Appl. Phys. B 31 97 [10] Young B, Cruz F, Itano W and Bergquist J 1999 Phys. Rev. Lett. 82 3799 [11] Jiang Y, Ludlow A, Lemke N, Fox R, Sherman J, Ma L and Oates C 2011 Nat. Photon. 5 158 [12] Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L and Ye J 2012 Nat. Photon. 6 687 [13] Yu D and Chen J 2007 Phys. Rev. Lett. 98 050801 [14] Chen J and Chen X 2005 Proc. 2005 IEEE International Frequency Control Symposium and Exposition (Vancouver, Canada 29–31 August 2005) p 608 [15] Chen J 2009 Frequency Standards and Metrology: Proceedings of the 7th Symposium (California, USA October 5–11 2008) p 525 [16] Chen J 2009 Chin. Sci. Bull. 54 348 [17] Wang Y 2009 Chin. Sci. Bull. 54 347 [18] Xu Z, Zhuang W, Wang Y, Wang D, Zhang X, Xue X, Pan D and Chen J 2013 Joint IEEE Int. Frequency Control Symp. & Eur. Frequency Time Foru (Prague Czech Repblic 21–25 July 2013) p 395 [19] Xu Z, Zhuang W and Chen J 2014 arXiv:1404.6021 [20] Pan D, Xu Z, Xue X, Zhuang W and Chen J 2014 Joint IEEE Int. Frequency Control Symp. (Taipei, May 19–22 2014) p 19 [21] Wang Y, Wang D, Zhang T, Hong Y, Zhang S, Tao Z, Xie X and Chen J 2013 Sci. Chin. Phys. Mech. Astron. 56 1107 [22] Wang Y, Xue X, Wang D, Zhang T, Sun Q, Hong Y, Zhuang W and Chen J 2012 Proc. 2012 IEEE International Frequency Control Symposium (Baltimore, Maryland, USA 21–24 May 2012) p 1 [23] Nesmeyanov A N 1963 Vapor Press. Chem. Elements (Amsterdam: Elsevier) p 146 [24] Kuppens S J M, van Exter M P and Woerdman J P 1994 Phys. Rev. Lett. 72 3815 [25] Yu D and Chen J 2008 Phys. Rev. A 78 013846 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|