Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 038502    DOI: 10.1088/0256-307X/32/3/038502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Lateral-Coupled Junctionless IZO-Based Electric-Double-Layer Thin-Film Transistors Gated by Solid-State Phosphosilicate Glass Electrolyte
ZHOU Ju-Mei1,2**, GAO Xiao-Hong1, ZHANG Hong-Liang2
1School of Mechanical and Electronic Engineering, Ningbo Dahongying University, Ningbo 315175
2Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
Cite this article:   
ZHOU Ju-Mei, GAO Xiao-Hong, ZHANG Hong-Liang 2015 Chin. Phys. Lett. 32 038502
Download: PDF(613KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We describe the lateral-coupled junctionless indium-zinc-oxide (IZO) thin-film transistors (TFTs) in which there are no junctions between channel and source/drain electrodes and with solid-state phosphosilicate glass electrolyte (PSG) gating. Due to the three-dimensional high proton conduction and lateral coupled electric-double-layer (EDL) capacitance (>1 μF/cm2) of the PSG, the low voltage (2.0 V) junctionless IZO TFTs and the dual coplanar gate devices are obtained. An AND logic function is demonstrated on the basis of the junctionless EDL-TFTs. Such devices are promising for applications in pH sensors, humidity sensors, biosensors, and neuron network simulation.
Published: 26 February 2015
PACS:  85.35.-p (Nanoelectronic devices)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  73.61.Jc (Amorphous semiconductors; glasses)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/038502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/038502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Ju-Mei
GAO Xiao-Hong
ZHANG Hong-Liang
[1] Jiang J et al 2011 Appl. Phys. Lett. 99 193502
[2] Jiang J et al 2013 IEEE Trans. Electron Devices 60 1951
[3] Rios R et al 2011 IEEE Electron Device Lett. 32 1170
[4] Lee C W et al2010 Appl. Phys. Lett. 96 102106
[5] Jiang J et al 2012 IEEE Electron Device Lett. 33 65
[6] Se H K et al 2013 Adv. Mater. 25 1822
[7] Yasuhide O et al 2009 Nano Lett. 9 3318
[8] Cho J H et al 2008 Nat. Mater. 7 900
[9] Misra R J et al 2007 Appl. Phys. Lett. 90 052905
[10] Hanno K 1996 J. Non-Cryst. Solids 203 225
[11] Pal B N et al 2009 Nat. Mater. 8 898
[12] Mei Q et al 2004 Solid State Ionics 168 75
[13] Li H et al 2011 Microporous Mesoporous Mater. 138 63
[14] Sun J et al 2011 IEEE Trans. Electron Devices 58 764
[15] Lu A X et al 2010 Appl. Phys. Lett. 96 043114
[16] Bhusari D et al 2005 Electrochem. Solid-State Lett. 8 A588
[17] Zhang G M et al 2013 Acta Phys. Sin. 62 137201 (in Chinese)
[18] Zhu L Q et al 2013 Appl. Phys. Lett. 102 043501
Related articles from Frontiers Journals
[1] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 038502
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 038502
[3] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 038502
[4] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 038502
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 038502
[6] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 038502
[7] Da-Ming Zhou, Yun-Sheng Deng, Cui-Feng Ying, Yue-Chuan Zhang, Yan-Xiao Feng, Qi-Meng Huang, Li-Yuan Liang, De-Qiang Wang. Rectification of Ion Current Determined by the Nanopore Geometry: Experiments and Modelling[J]. Chin. Phys. Lett., 2016, 33(10): 038502
[8] SHU Yi, TIAN He, WANG Zhe, ZHAO Hai-Ming, MI Wen-Tian, LI Yu-Xing, CAO Hui-Wen, REN Tian-Ling. Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film[J]. Chin. Phys. Lett., 2015, 32(11): 038502
[9] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 038502
[10] WU Guo-Dong, ZHANG Jin, WAN Xiang. Junctionless Coplanar-Gate Oxide-Based Thin-Film Transistors Gated by Al2O3 Proton Conducting Films on Paper Substrates[J]. Chin. Phys. Lett., 2014, 31(10): 038502
[11] ZHANG Jin, WU Guo-Dong. Ultralow-Voltage Electric-Double-Layer Oxide-Based Thin-Film Transistors with Faster Switching Response on Flexible Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 038502
[12] TANG Shi-Yu, LI Run, OU Xin, XU Han-Ni, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. TixSb2Te Thin Films for Phase Change Memory Applications[J]. Chin. Phys. Lett., 2014, 31(07): 038502
[13] LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 038502
[14] LI Run, TANG Shi-Yu, BAI Gang, YIN Qiao-Nan, LAN Xue-Xin, XIA Yi-Dong, YIN Jiang, LIU Zhi-Guo. GeTe4 as a Candidate for Phase Change Memory Application[J]. Chin. Phys. Lett., 2013, 30(5): 038502
[15] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 038502
Viewed
Full text


Abstract