CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A High-Efficiency Broadband Superconducting Nanowire Single-Photon Detector with a Composite Optical Structure |
GU Min, KANG Lin**, ZHANG La-Bao, ZHAO Qing-Yuan, JIA Tao, WAN Chao, XU Rui-Ying, YANG Xiao-Zhong, WU Pei-Heng |
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
GU Min, KANG Lin, ZHANG La-Bao et al 2015 Chin. Phys. Lett. 32 038501 |
|
|
Abstract Superconducting nanowire single-photon detectors (SNSPDs) with a composite optical structure composed of phase-grating and optical cavity structures are designed to enhance both the system detection efficiency and the response bandwidth. Numerical simulation by the finite-difference time-domain method shows that the photon absorption capacity of SNSPDs with a composite optical structure can be enhanced significantly by adjusting the parameters of the phase-grating and optical cavity structures at multiple frequency bands. The absorption capacity of the superconducting nanowires reaches 70%, 72%, 60.73%, 61.7%, 41.2%, and 46.5% at wavelengths of 684, 850, 732, 924, 1256, and 1426 nm, respectively. The use of a composite optical structure reduces the total filling factor of superconducting nanowires to only 0.25, decreases the kinetic inductance of SNSPDs, and improves the count rates.
|
|
Published: 26 February 2015
|
|
PACS: |
85.25.Pb
|
(Superconducting infrared, submillimeter and millimeter wave detectors)
|
|
07.57.Kp
|
(Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
03.67.Hk
|
(Quantum communication)
|
|
|
|
|
[1] Hadfield R H, Habif J L, Schlafer J et al 2006 Appl. Phys. Lett. 89 241129 [2] Miki S, Yamashita T, Terai H et al 2013 Opt. Express 21 10208 [3] Ikuta R, Kato H, Kusaka Y et al 2013 Phys. Rev. A 87 010301 [4] Natarajan C M, Tanner M G and Hadfield R H 2012 Supercond. Sci. Technol. 25 063001 [5] Gol'tsman G N, Okunev O, Chulkova G et al 2001 Appl. Phys. Lett. 79 705 [6] Zhang L B, Zhao Q Y, Zhong Y et al 2009 Appl. Phys. B 97 187 [7] Marsili F, Najafi F, Dauler E et al 2011 Nano Lett. 11 2048 [8] Marsili F, Bitauld D, Fiore A et al 2008 Opt. Express 16 3191 [9] Zhang L B, Kang L, Chen J et al 2011 Acta Phys. Sin. 6 038501 (in Chinese) [10] Zhou Y, Zhang L B, Jia T et al 2012 Acta Phys. Sin. 61 208501 (in Chinese) [11] Rosfjord K M, Yang J K W, Dauler E A et al 2006 Opt. Express 14 527 [12] Yamashita T, Miki S, Terai H et al 2013 Opt. Express 21 27177 [13] Baek B, Lita A E, Verma V et al 2011 Appl. Phys. Lett. 98 251105 [14] Miki S, Yamashita T, Fujiwara M et al 2011 IEICE Trans. Electron. E94-C 260 [15] Lin S Z and Roy D 2013 J. Phys.: Condens. Matter 25 325701 [16] Torcal-Milla F J, Sanchez-Brea L M and Salgado-Remacha F J 2009 Appl. Opt. 48 6252 [17] Rayleigh L 1881 Philos. Mag. 11 196 [18] Driessen E F C, Braakman F R, Reiger E M et al 2009 Eur. Phys. J. Appl. Phys. 47 10701 [19] Kerman A J, Dauler E A, Keicher W E et al 2006 Appl. Phys. Lett. 88 111116 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|