Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 038201    DOI: 10.1088/0256-307X/32/3/038201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor–Based on Chaotic Oscillator: A Quantum Simulation Study
Van Ha Nguyen, Hanjung Song**
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Korea
Cite this article:   
Van Ha Nguyen, Hanjung Song 2015 Chin. Phys. Lett. 32 038201
Download: PDF(1090KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We evaluate the impact of temperature on the output behavior of a carbon nanotube field effect transistor (CNFET) based chaotic generator. The sources cause the variations in both current?voltage characteristics of the CNFET device and an overall chaotic circuit is pointed out. To verify the effect of temperature variation on the output dynamics of the chaotic circuit, a simulation is performed by employing the CNFET compact model of Wong et al. in HSPICE with a temperature range from -100°C to 100°C. The obtained results with time series, frequency spectra, and bifurcation diagram from the simulation demonstrate that temperature plays a significant role in the output dynamics of the CNFET-based chaotic circuit. Thus, temperature-related issues should be taken into account while designing a high-quality chaotic generator with high stability.
Published: 26 February 2015
PACS:  82.40.Bj (Oscillations, chaos, and bifurcations)  
  05.45.Gg (Control of chaos, applications of chaos)  
  85.35.Kt (Nanotube devices)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/038201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/038201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Van Ha Nguyen
Hanjung Song
[1] Delgado-Restituto M and Rodríguez-Vázquez A 1998 IEEE Trans. Circuits Syst. I 45 481
[2] Horio Y, Aihara K and Yamamoto O 2003 IEEE Trans. Neural Netw. Learn. Syst. 14 1393
[3] Song H J and Kwack K D 2002 IEEE Int. Symp. Circuits Syst. 3 III-73
[4] Dudek P and Juncu V D 2003 Electron. Lett. 39 1431
[5] Nguyen V H et al 2013 IEICE Electron. Express 10 20120943
[6] Natori K et al 2005 J. Appl. Phys. 97 034306
[7] Guo J et al 2002 Appl. Phys. Lett. 80 3192
[8] Zhou J C and Song H J 2013 Chin. Phys. Lett. 30 020501
[9] Kazmierski T J et al 2010 IEEE Trans. Nanotechnol. 9 99
[10] Deng J and Wong H S P 2007 IEEE Trans. Electron Devices 54 3186
[11] Deng J and Wong H S P 2007 IEEE Trans. Electron Devices 54 3195
[12] Nguyen V H et al 2014 Chin. Phys. B 23 058201
Related articles from Frontiers Journals
[1] Yasuomi D. Sato. Frequency Switches at Transition Temperature in Voltage-Gated Ion Channel Dynamics of Neural Oscillators[J]. Chin. Phys. Lett., 2018, 35(5): 038201
[2] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 038201
[3] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 038201
[4] NAM Sang Guk, NGUYEN Van Ha, SONG Hanjung. Photodiode-Based Chua's Circuit with Light Controllability[J]. Chin. Phys. Lett., 2014, 31(06): 038201
[5] Yasuomi D. Sato. Frequency Gradient with Respect to Temperature for Determination of Classification of the Phase Response Curve[J]. Chin. Phys. Lett., 2013, 30(12): 038201
[6] LI Xiang-Hong, BI Qin-Sheng . Cusp Bursting and Slow-Fast Analysis with Two Slow Parameters in Photosensitive Belousov–Zhabotinsky Reaction[J]. Chin. Phys. Lett., 2013, 30(7): 038201
[7] Van Ha Nguyen, Han Jung Song . Bifurcation Analysis of the Voltage Controlled Photosensitive Chaotic Oscillator[J]. Chin. Phys. Lett., 2013, 30(6): 038201
[8] ZHOU Ji-Chao, SONG Han-Jung. Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit[J]. Chin. Phys. Lett., 2013, 30(2): 038201
[9] LI Xiang-Hong, BI Qin-Sheng. Single-Hopf Bursting in Periodic Perturbed Belousov–Zhabotinsky Reaction with Two Time Scales[J]. Chin. Phys. Lett., 2013, 30(1): 038201
[10] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 038201
[11] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 038201
[12] CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye, WANG Wei-Chi. Cytoplasmic Ca2+ Dynamics under the Interplay between the Different IP3R Gating Models and the Plasma Membrane Ca2+ Influx[J]. Chin. Phys. Lett., 2010, 27(1): 038201
[13] MENG Pan, LU Qi-Shao. Dynamical Effect of Calcium Pump on Cytosolic Calcium Bursting Oscillations with IP3 Degradation[J]. Chin. Phys. Lett., 2010, 27(1): 038201
[14] CHEN Xi, GAO Yong, YANG Yuan. A Novel Method for the Initial-Condition Estimation of a Tent Map[J]. Chin. Phys. Lett., 2009, 26(7): 038201
[15] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 038201
Viewed
Full text


Abstract