Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 021201    DOI: 10.1088/0256-307X/32/2/021201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Quark Number Susceptibility around the Chiral Critical End Point
JIANG Yu1,4, HOU Feng-Yao2,4, LUO Cui-Bai3, ZONG Hong-Shi3,4,5
1Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004
2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
3Department of Physics, Nanjing University, Nanjing 210093
4State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
5Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
Cite this article:   
JIANG Yu, HOU Feng-Yao, LUO Cui-Bai et al  2015 Chin. Phys. Lett. 32 021201
Download: PDF(610KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We calculate the quark number susceptibility (QNS) around the chiral critical end point (CEP). The CEP is found to be located at (μc,Tc) = (80 MeV, 148 MeV) where μc and Tc are the critical chemical potential and temperature, respectively. The QNS is found to have the highest and sharpest peak at the CEP. It is also found that, when the chemical potential μ is in the range of 60 MeV ≤μ≤110 MeV, the QNS near the transition temperature is larger than the free field result, which indicates that the space-like damping mode dominates the degree of freedom of motion near the CEP.
Published: 20 January 2015
PACS:  12.38.Mh (Quark-gluon plasma)  
  12.39.-x (Phenomenological quark models)  
  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/021201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/021201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Yu
HOU Feng-Yao
LUO Cui-Bai
ZONG Hong-Shi
[1] Braun-Munzinger P and Wambach J 2009 Rev. Mod. Phys. 81 1031
[2] Stephanov M 2004 Prog. Theor. Phys. Suppl. 153 139
[3] Stephanov M 2005 Int. J. Mod. Phys. A 20 4387
[4] Zhuang P F, Qu Z and Liu Y P 2012 Chin. Phys. Lett. 29 031201
[5] Stephanov M, Rajagopal K and Shuryak E 1998 Phys. Rev. Lett. 81 4816
[6] Hatta Y and Stephanov M 2003 Phys. Rev. Lett. 91 102003
[7] Fodor Z and Katz S D 2004 J. High Energy Phys. 0404 050
[8] Stephanov M 2006 Phys. Rev. D 73 094508
[9] Lacey R A et al 2007 Phys. Rev. Lett. 98 092301
[10] Shinji Ejiri 2008 Phys. Rev. D 77 014508
[11] Chen H S 2009 Acta Phys. Sin. 58 6791 (in Chinese)
[12] Cao J, Zhao A M, Sun W M and Zong H S 2012 Chin. Phys. Lett. 29 061201
[13] Jiang Y, Gong Hao, Sun W M and Zong H S 2012 Chin. Phys. Lett. 29 041201
[14] Gottlieb S et al 1987 Phys. Rev. Lett. 59 2247
[15] McLerran L 1987 Phys. Rev. D 36 3291
[16] Gavai R V, Potvin J and Sanielevici S 1989 Phys. Rev. D 40 2743
[17] Kunihiro T 1991 Phys. Lett. B 271 395
[18] Jeon S and Koch V 2000 Phys. Rev. Lett. 85 2076
[19] Asakawa M, Heinz U and Müller B 2000 Phys. Rev. Lett. 85 2072
[20] Hatta Y and Ikeda T 2003 Phys. Rev. D 67 014028
[21] Fujii H 2003 Phys. Rev. D 67 094018
[22] Fujii H and Ohtani M 2004 Phys. Rev. D 70 014016
[23] Gottlieb S et al 1988 Phys. Rev. D 38 2888
[24] Gavai R V and Gupta S 2001 Phys. Rev. D 64 074506
[25] Gavai R V and Gupta S 2002 Phys. Rev. D 65 094515
[26] Gavai R V, Gupta S and Majumdar P 2002 Phys. Rev. D 65 054506
[27] Allton C R et al 2003 Phys. Rev. D 68 014507
[28] Allton C R et al 2005 Phys. Rev. D 71 054508
[29] Sasaki C, Friman B and Redlich K 2007 Phys. Rev. D 75 054026
[30] Blaizot J P, Iancu E and Rebhan A 2001 Phys. Lett. B 523 143
[31] Chakraborty P, Mustafa M G and Thoma M H 2002 Eur. Phys. J. C 23 591
[32] Blaizot J P, Iancu E and Rebhan A 2003 Eur. Phys. J. C 27 433
[33] Jiang Y, Zhu H X, Sun W M and Zong H S 2010 J. Phys. G: Nucl. Part. Phys. 37 055001
[34] Jiang Y, Li H, Huang S X, Sun W M and Zong H S 2010 J. Phys. G: Nucl. Part. Phys. 37 105004
[35] He M, He D K, Feng H T, Sun W M and Zong H S 2007 Phys. Rev. D 76 076005
[36] He M, Li J F, Sun W M and Zong H S 2009 Phys. Rev. D 79 036001
[37] He D K, Ruan X X, Jiang Y, Sun W M and Zong H S 2009 Phys. Lett. B 680 432
[38] Jiang Y, Luo L J and Zong H S 2011 J. High Energy Phys. 1102 066
[39] Cao J, Zhao A M, Luo L J, Sun W M and Zong H S 2010 Chin. Phys. Lett. 27 031201
[40] Chen H, Baldo M, Burgio G F and Schulze H J 2011 Phys. Rev. D 84 105023
[41] Jiang Y, Chen H, Sun W M and Zong H S 2013 J. High Energy Phys. 1304 014
[42] Zong H S and Sun W M 2008 Phys. Rev. D 78 054001
[43] Cucchieri A, Maas A and Mendes T 2007 Phys. Rev. D 75 076003
[44] Maris P and Roberts C D 1997 Phys. Rev. C 56 3369
[45] Maris P and Tandy P C 1999 Phys. Rev. C 60 055214
[46] H?ll A, Maris P and Roberts C D 1999 Phys. Rev. C 59 1751
[47] Maris P, Roberts C D, Schmidt S M and Tandy P C 2001 Phys. Rev. C 63 025202
[48] Shi C, Wang Y L, Jiang Y, Cui Z F and Zong H S 2014 J. High Energy Phys. 1407 014
Related articles from Frontiers Journals
[1] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 021201
[2] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 021201
[3] Jing-Ya Zhang, Luan Cheng. Strong Interaction Effect on Jet Energy Loss with Detailed Balance[J]. Chin. Phys. Lett., 2017, 34(10): 021201
[4] Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang. Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks[J]. Chin. Phys. Lett., 2017, 34(4): 021201
[5] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 021201
[6] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 021201
[7] MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De. Quark Loop Contribution to the Gluon Damping Rate in Hot QCD[J]. Chin. Phys. Lett., 2015, 32(12): 021201
[8] Barbara Betz, Miklos Gyulassy. Sensitivity of Pion versus Parton-Jet Nuclear Modification Factors to the Path-Length Dependence of Jet-Energy Loss at RHIC and LHC[J]. Chin. Phys. Lett., 2015, 32(12): 021201
[9] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 021201
[10] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 021201
[11] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 021201
[12] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 021201
[13] P. Guptaroy, S. Guptaroy. Direct Photon Production at RHIC and LHC-Energies: Measured Data Versus a Model[J]. Chin. Phys. Lett., 2013, 30(6): 021201
[14] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 021201
[15] TANG Ze-Bo, YI Li, RUAN Li-Juan, SHAO Ming, LI Cheng, CHEN Hong-Fang, Bedanga Mohanty, XU Zhang-Bu. The Statistical Origin of Constituent-Quark Scaling in QGP Hadronization[J]. Chin. Phys. Lett., 2013, 30(3): 021201
Viewed
Full text


Abstract