Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 114401    DOI: 10.1088/0256-307X/31/11/114401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Depression of the Superfluid Transition Temperature in 4He by a Heat Flow
YIN Liang1, LIN Peng2, QI Xin1**
1School of Science, Beijing University of Chemical Technology, Beijing 100029
2Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
YIN Liang, LIN Peng, QI Xin 2014 Chin. Phys. Lett. 31 114401
Download: PDF(560KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The depression of the superfluid transition temperature in He by a heat flow Q is studied. A small sealed cell with a capillary is introduced and a stable and flat superfluid transition temperature plateau is easily obtained by controlling the temperature of the variable-temperature platform and the bottom chamber of the sealed cell. Owing to the depression effect of the superfluid transition temperature by the heat flow, the heat flow through the capillary is changed by the temperature control to obtain multiple temperature plateaus of different heat flows. The thermometer self-heating effect, the residual heat leak of the 4.2 K environment, the temperature difference on the He II liquid column, the Kapiza thermal resistance between the liquid helium and the copper surface of the sealed cell, the temperature gradient of the sealed cell, the static pressure of the He II liquid column and other factors have influence on the depression effect and the influence is analyzed in detail. Twenty experiments of the depression of the superfluid transition temperature in 4He by heat flow are made with four sealed cells in one year. The formula of the superfluid transition temperature pressured by the heat flow is Tλ(Q)=?0.00000103Q+2.1769108, and covers the range 229≤Q≤6462 μW/cm2.
Published: 28 November 2014
PACS:  44.20.+b (Boundary layer heat flow)  
  44.35.+c (Heat flow in multiphase systems)  
  44.90.+c (Other topics in heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/114401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/114401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YIN Liang
LIN Peng
QI Xin
[1] Onuki A 1983 J. Low Temp. Phys. 50 433
[2] Onuki A 1984 J. Low Temp. Phys. 55 309
[3] Duncan R V et al 1988 Phys. Rev. Lett. 60 1522
[4] Sergatskov D A et al 2004 J. Low Temp. Phys. 134 517
[5] Chatto A R et al 2007 J. Low Temp. Phys. 148 519
[6] Lin P et al 2002 Cryogenics 42 443
[7] Lin P et al 2011 Int. J. Thermophys. 32 153
[8] Yin L et al 2014 Low Temp. Phys. 40 263
[9] Lin P et al 1990 Cryogenics 30 432
[10] Yin L et al 2011 Metrol. Meas. Syst. 18 13
[11] Thomas H P 1990 Metrologia 27 107
[12] David G and Andrew R C 2003 Am. J. Phys. 71 850
[13] Kerrisk J and Keller W 1969 Phys. Rev. 177 341
[14] Ahlers G 1968 Phys. Rev. Lett. 21 1159
[15] Pollack G L 1969 Rev. Mod. Phys. 41 48
[16] Duncan R V and Ahlers G 1991 Phys. Rev. B 43 7707
[17] Kierstead H A 1967 Phys. Rev. 153 258
[18] Ahlers G 1968 Phys. Rev. 171 275
Related articles from Frontiers Journals
[1] Yi-Hui Huang, Hong-Wei Song, Chen-Guang Huang. Heat Transfer and Mode Transition for Laser Ablation Subjected to Supersonic Airflow[J]. Chin. Phys. Lett., 2016, 33(01): 114401
[2] Adnan Saeed Butt, Asif Ali. Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface[J]. Chin. Phys. Lett., 2013, 30(2): 114401
[3] Abdul Rehman, S. Nadeem. Mixed Convection Heat Transfer in Micropolar Nanofluid over a Vertical Slender Cylinder[J]. Chin. Phys. Lett., 2012, 29(12): 114401
[4] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 114401
[5] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 114401
[6] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 114401
[7] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 114401
[8] S. Mukhopadhyay . Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J]. Chin. Phys. Lett., 2010, 27(12): 114401
[9] A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2008, 25(2): 114401
[10] Seripah Awang Kechil, Ishak Hashim, Sim Siaw Jiet. Approximate Analytical Solutions for a Class of Laminar Boundary-Layer Equations[J]. Chin. Phys. Lett., 2007, 24(7): 114401
[11] CHEN Xue-Hui, ZHENG Lian-Cun, ZHANG Xin-Xin. MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity[J]. Chin. Phys. Lett., 2007, 24(7): 114401
[12] Seripah Awang Kechil, Ishak Hashim. Series Solution for Unsteady Boundary-Layer Flows Due to Impulsively Stretching Plate[J]. Chin. Phys. Lett., 2007, 24(1): 114401
[13] ZHENG Lian-Cun, CHEN Xue-Hui, ZHANG Xin-Xin, HE Ji-Cheng. An Approximately Analytical Solution for the Marangoni Convection in an In-Ga-Sb System[J]. Chin. Phys. Lett., 2004, 21(10): 114401
Viewed
Full text


Abstract