PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Simulation of the Quasi-Monoenergetic Protons Generation by Parallel Laser Pulses Interaction with Foils |
WANG Wei-Quan1, YIN Yan1**, ZOU De-Bin1, YU Tong-Pu1, YANG Xiao-Hu1, XU Han2, YU Ming-Yang3, MA Yan-Yun1, ZHUO Hong-Bin1, SHAO Fu-Qiu1 |
1College of Science, National University of Defense Technology, Changsha 410073 2College of Computer Science, National University of Defense Technology, Changsha 410073 3Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
WANG Wei-Quan, YIN Yan, ZOU De-Bin et al 2014 Chin. Phys. Lett. 31 115201 |
|
|
Abstract A new scheme of radiation pressure acceleration for generating high-quality protons by using two overlapping-parallel laser pulses is proposed. Particle-in-cell simulation shows that the overlapping of two pulses with identical Gaussian profiles in space and trapezoidal profiles in the time domain can result in a composite light pulse with a spatial profile suitable for stable acceleration of protons to high energies. At ~2.46×1021 W/cm2 intensity of the combination light pulse, a quasi-monoenergetic proton beam with peak energy ~200 MeV/nucleon, energy spread <15%, and divergency angle <4° is obtained, which is appropriate for tumor therapy. The proton beam quality can be controlled by adjusting the incidence points of two laser pulses.
|
|
Published: 28 November 2014
|
|
PACS: |
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
42.62.Be
|
(Biological and medical applications)
|
|
|
|
|
[1] Bulanov S V, Esirkepov T, Khoroshkov V, Kuznetsov A and Pegoraro F 2002 Phys. Lett. A 299 240 [2] Fernández J, Honrubia J, Albrigh B, Flippo K, Gautier D, Hegelich B, Schmitt M, Temporal M and Yin L 2009 Nucl. Fusion 49 065004 [3] Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G and Zhang J 2010 Nat. Phys. 6 984 [4] Borghesi M, Schiavi A, Campbell D H, Haines M G, Willi O, Mackinnon A J, Patel P, Galimberti M and Gizzi L A 2003 Rev. Sci. Instrum. 74 1688 [5] Salamin Y I, Harman Z and Keitel C H 2008 Phys. Rev. Lett. 100 155004 [6] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A and Snavely R A 2001 Phys. Plasmas 8 542 [7] Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T and Fernández J C 2007 Phys. Plasmas 14 056706 [8] Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003 [9] Silva L O, Michael M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002 [10] Wang F C 2013 Chin. Phys. B 22 124102 [11] Zhuo H B, Chen Z L, Yu W, Sheng Z M, Yu M Y, Jin Z and Kodama R 2010 Phys. Rev. Lett. 105 065003 [12] Huang Y S, Wang N Y, Tang X Z, Shi Y J and Zhang S 2013 Chin. Phys. Lett. 30 025201 [13] Yu T P, Ma Y Y, Chen M, Shao F Q, Yu M Y, Gu Y Q and Yin Y 2009 Phys. Plasmas 16 033112 [14] Schwoerer H, Pfotenhauer S, J?ckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D and Esirkepov T 2006 Nature 439 445 [15] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett. 100 135003 [16] Pegoraro F and Bulanov S V 2009 Laser Phys. 19 222 [17] Chen M, Pukhov A, Yu T P and Sheng Z M 2009 Phys. Rev. Lett. 103 024801 [18] Yu T P, Chen M and Pukhov A 2009 Laser Part. Beams 27 611 [19] Wang H Y, Lin C, Zheng F L, Lu Y R, Guo Z Y, He X T, Chen J E and Yan X Q 2011 Phys. Plasmas 18 093105 [20] Xu H, Chang W W and Zhuo H B 2002 Chin. J. Comput. Phys. 19 305 (in Chinese) [21] Robinson A P L, Zepf M, Kar S, Evans R G and Bellei C 2008 New J. Phys. 10 013021 [22] Macchi A, Veghini S and Pegoraro F 2009 Phys. Rev. Lett. 103 085003 [23] Yu T P, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002 [24] Pukhov A 1999 J. Plasma Phys. 61 425 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|