CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
A Kinetic Transition from Low to High Fragility in Cu-Zr Liquids |
BI Qing-Ling, LÜ Yong-Jun** |
School of Physics, Beijing Institute of Technology, Beijing 100081
|
|
Cite this article: |
BI Qing-Ling, Lü Yong-Jun 2014 Chin. Phys. Lett. 31 106401 |
|
|
Abstract Researchers have reported that Cu-Zr liquids are kinetically strong at the best glass-forming compositions. Here we systematically study the temperature dependence of viscosity and diffusion of Cu-Zr liquids using molecular dynamics simulations, and the results illustrate that the better glass formers are actually more fragile close to the glass transition. There is a kinetic transition from low to high fragility when the optimal glass-forming liquids are quenched into glass states. This transition is associated with the more rapid decrease of the excess entropy of the liquids above and close to the glass transition temperature, Tg, compared to other compositions. Accompanied by the transition to high fragility, peaks in the thermal expansivity and specific heat are observed at the optimal compositions. Furthermore, the Stokes–Einstein relation is examined over a wide composition range for Cu-Zr alloys, and the results indicate that glass-forming ability closely correlates with dynamical heterogeneity.
|
|
Published: 31 October 2014
|
|
PACS: |
64.70.pe
|
(Metallic glasses)
|
|
64.70.Q-
|
(Theory and modeling of the glass transition)
|
|
66.20.-d
|
(Viscosity of liquids; diffusive momentum transport)
|
|
|
|
|
[1] Angell C A 1995 Science 267 1924 [2] Debenedetti P G and Stillinger F H 2001 Nature 410 259 [3] Inoue A and Nishiyama N 2007 MRS Bull. 32 651 [4] Wang W H 2012 Prog. Mater. Sci. 57 487 [5] Wang W H 2011 J. Appl. Phys. 110 053521 [6] Greer A L 1993 Nature 366 303 [7] Tang C and Harrowell P 2013 Nat. Mater. 12 507 [8] Lu Z P and Liu C T 2003 Phys. Rev. Lett. 91 115505 [9] Mukherjee S, Schroers J, Johnson W L and Rhim W K 2005 Phys. Rev. Lett. 94 245501 [10] Senkov O N 2007 Phys. Rev. B 76 104202 [11] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T and Chen M W 2009 Phys. Rev. Lett. 103 075502 [12] Wang Q, Liu C T, Yang Y, Dong Y D and Liu J 2011 Phys. Rev. Lett. 106 215505 [13] Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G and Jiang J Z 2012 Phys. Rev. Lett. 109 105502 [14] Guan P F, Fujita T, Hirata A, Liu Y H and Chen M W 2012 Phys. Rev. Lett. 108 175501 [15] An Q, Samwer K, Goddard W A, Johnson W L, Jaramillo-Botero A, Garret G and Demetriou M D 2012 J. Phys. Chem. Lett. 3 3143 [16] Yu C Y, Liu X J, Zheng G P and Liu C T 2013 Sci. Rep. 3 2124 [17] Guerdane M, Teichler H and Nestler B 2013 Phys. Rev. Lett. 110 086105 [18] Tang M B, Zhao D Q, Pan M X and Wang W H 2004 Chin. Phys. Lett. 21 901 [19] Inoue A and Zhang W 2004 Mater. Trans. 45 584 [20] Xu D, Lohwongwatana B, Duan G, Johnson W L and Garland C 2004 Acta Mater. 52 2621 [21] Li Y, Guo Q, Kalb J A and Thompson C A 2008 Science 322 1816 [22] Bendert J C, Gangopadhyay A K, Mauro N A and Kelton K F 2012 Phys. Rev. Lett. 109 185901 [23] Bendert J C and Kelton K F 2013 J. Non-Cryst. Solids 376 205 [24] Angell C A 1988 J. Phys. Chem. Solids 49 863 [25] Mendelev M I 2009 Philos. Mag. 89 967 [26] Nosé S 1984 J. Chem. Phys. 81 511 [27] Hoover W G 1985 Phys. Rev. A 31 1695 [28] Richert R and Angell C A 1998 J. Chem. Phys. 108 9016 [29] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587 [30] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99 [31] Donati C, Glotzer S C, Poole P H, Kob W and Plimpton S J 1999 Phys. Rev. E 60 3107 [32] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett. 93 135701 [33] Doliwa B and Heuer A 2002 J. Non-Cryst. Solids 307 32 [34] Cheng H, Lü Y J and Chen M 2009 J. Chem. Phys. 131 044502 [35] Horbach J, Das S K, Griesche A, Macht M P, Frohberg G and Meyer A 2007 Phys. Rev. B 75 174304 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|