Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 100301    DOI: 10.1088/0256-307X/31/10/100301
GENERAL |
Selective Tunneling Dynamics of Bosons with Effective Three-Particle Interactions
NIU Zhen-Xia, XUE Ju-Kui**
Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
NIU Zhen-Xia, XUE Ju-Kui 2014 Chin. Phys. Lett. 31 100301
Download: PDF(1278KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The selective coherent destruction of tunneling (CDT) of ultracold Bose gas with three-particle interactions in a modulated double-well potential is discussed. It is shown that the effects of two- and three-particle interactions on the dynamics of the selective CDT are strongly coupled and the three-particle interactions significantly modify the selective CDT. For weak three-particle interactions, an upper bound of the boson number for realizing the selective CDT exists and the region of boson number for realizing the selective CDT is enlarged (reduced) with repulsive (attractive) three-particle interactions. For strong three-particle interactions, the boson number in the system for realizing the selective CDT not only has an upper bound, but also has a lower bound. The results are confirmed by numerical simulations.
Published: 31 October 2014
PACS:  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/100301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/100301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIU Zhen-Xia
XUE Ju-Kui
[1] Grossmann F et al 1991 Phys. Rev. Lett. 67 516
[2] Grifoni M and H?nggi P 1998 Phys. Rep. 304 229
[3] Della Valle G et al 2007 Phys. Rev. Lett. 98 263601
[4] Lignier H et al 2007 Phys. Rev. Lett. 99 220403
[5] Kierig E et al 2008 Phys. Rev. Lett. 100 190405
[6] Eckardt A et al 2009 Phys. Rev. A 79 013611
[7] Grossmann F et al 1991 Z. Phys. B 84 315
[8] Wang G F et al 2006 Phys. Rev. A 73 013619
[9] Lu G B et al 2009 Phys. Rev. A 80 013411
[10] Longhi S 2012 J. Phys.: Condens. Matter 24 435601
[11] Holthaus M 2001 Phys. Rev. A 64 011601(R)
[12] Eckardt A and Holthaus M 2007 Europhys. Lett. 80 50004
[13] Creffield C E and Sols F 2008 Phys. Rev. Lett. 100 250402
[14] Sias C et al 2008 Phys. Rev. Lett. 100 040404
[15] Longhi S 2012 Phys. Rev. A 86 044102
[16] Gong J et al 2009 Phys. Rev. Lett. 103 133002
[17] Lou X B et al 2014 New J. Phys. 16 013007
[18] Chereji R V et al 2011 Phys. Rev. E 83 050903
[19] Liu Z X et al 2012 Phys. Rev. B 86 195122
[20] Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624
[21] Wu Y and Yang X X 1997 Phys. Rev. A 56 2443
[22] Zhang P et al 2010 Phys. Rev. A 82 043625
[23] Knoop S et al 2009 Nat. Phys. 5 227
[24] Zaccanti M et al 2009 Nat. Phys. 5 586
[25] Zhang A X and Xue J K 2010 Phys. Rev. A 82 013606
[26] Greiner M et al 2002 Nature 419 51
[27] K?hler T 2002 Phys. Rev. Lett. 89 210404
[28] Will S et al 2010 Nature 465 197
[29] Johnson P R et al 2009 New J. Phys. 11 093022
[30] Petrov D S 2014 Phys. Rev. Lett. 112 103201
[31] Daley A J and Simon J 2014 Phys. Rev. A 89 053619
[32] Tiesinga E and Johnson P R 2011 Phys. Rev. A 83 063609
[33] Sowiński T 2012 Phys. Rev. A 85 065601
[34] Longhi S 2008 Phys. Rev. B 77 195326
Related articles from Frontiers Journals
[1] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 100301
[2] XU Feng, WANG Li-Fei, CUI Xiao-Dong. Quantum Interference by Entangled Trajectories[J]. Chin. Phys. Lett., 2015, 32(08): 100301
[3] DONG Dong, GONG Ming, ZOU Xu-Bo, GUO Guang-Can. Controlling the Directed Quantum Transport of Ultracold Atoms in an Optical Lattice with a Periodic Driving Field[J]. Chin. Phys. Lett., 2015, 32(02): 100301
[4] LUO Xiao-Bing, LIU Rong-Xuan, LIU Ming-Hua, YU Xiao-Guang, WU Dong-Lan, HU Qiang-Lin. Optical Transparency Induced by Periodic Modulation in a Passive Optical Coupler[J]. Chin. Phys. Lett., 2014, 31(2): 100301
[5] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 100301
[6] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 100301
[7] CHEN Wen, CHEN Zhi-De. Quantum Tricritical Point in the Spin-Boson Model with an Ohmic Bath[J]. Chin. Phys. Lett., 2007, 24(5): 100301
[8] HAN Yi-Wen. Massive Particle's Tunnelling from Black Hole with Topological Defect[J]. Chin. Phys. Lett., 2007, 24(2): 100301
[9] WANG Zhi-Yong, XIONG Cai-Dong. Superluminal Behaviour of Modified Bessel Waves[J]. Chin. Phys. Lett., 2006, 23(9): 100301
[10] WANG Wen-Ge. Decay Rate of Energy Eigenfunctions in Classically Energetically Inaccessible Regions in more than One Dimensional Configuration Spaces[J]. Chin. Phys. Lett., 2005, 22(12): 100301
[11] WANG Qi-Sheng, DU Si-De, ZHOU Lu-Wei, CHEN Xiao-Shuang, BAO Liang-Hua. Detuning Effects in the One-Photon Mazer[J]. Chin. Phys. Lett., 2004, 21(9): 100301
[12] HE Xiao-Ling, DU Si-De, ZHOU Lu-Wei, WANG Qi-Sheng, CHEN Hao. Tunnelling of Two-Level Atoms in Two-Photon Mazer: Atomic Coherence Effect and Statistics of Cavity Fields[J]. Chin. Phys. Lett., 2004, 21(1): 100301
[13] HE Xiao-Ling, DU Si-De, CHEN Hao, LU Jing. Coherent Control of Transmission Probability of a Cold Atom Through Microcavity Potentials[J]. Chin. Phys. Lett., 2003, 20(4): 100301
[14] LI Zhi-Jian, NIE Yi-Hang, LIANG Jiu-Qing, YAN Qi-Wei. Larmor Precession and Tunneling Time of a Non-Relativistic Neutral Spin-1/2 Particle Through an Arbitrary Potential Barrier[J]. Chin. Phys. Lett., 2002, 19(1): 100301
Viewed
Full text


Abstract